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RESUMO

FRUTUOSO, L. J.  Reconhecimento de emoções através de Redes Neurais. 2021. 64 f.

Monografia  (Trabalho  de  Conclusão  de  Curso)  -  Escola  de  Engenharia  de  São  Carlos,

Universidade de São Paulo, São Carlos, 2021.

O uso da inteligência artificial  é amplamente difundido nas mais diversas aplicações

tecnológicas atuais. Numa sociedade onde a interação entre os seres humanos e as máquinas

ocorre de maneira cada vez mais profunda, o entendimento de características humanas se

torna  fundamental  para  as  máquinas.  A  fim  de  tornar  mais  eficaz  esta  interação,  o

reconhecimento de emoções pode ser visto como um dos pilares que constitui as informações

necessárias para avaliar o estado mental de uma pessoa. O presente trabalho tem por objetivo

treinar  uma rede neural  capaz  de  identificar  emoções  humanas,  utilizando  como base  de

dados o conjunto de imagens FER-2013. Na revisão bibliográfica são abordados conceitos

históricos  sobre  o  surgimento  das  redes  neurais,  sua  estrutura,  seu  funcionamento  e

problemas comuns. Para a obtenção dos dados utilizados neste trabalho foram treinadas 66

redes, com hiperparâmetros que se demonstraram promissores, por evidência empírica ou por

resultados  de  outros  autores.  Os  conceitos  apresentados  foram  então  utilizados  no

embasamento  dos  resultados  e  na  escolha  da  melhor  rede  dentre  todas  as  treinadas,  que

apresentou 47.17% de acurácia média no conjunto de testes. Apesar de não ser uma acurácia

satisfatória  para aplicações  práticas,  ela  foi obtida através  de ajustes dos hiperparâmetros

demonstrando, claramente, a influência deles sobre a performance das redes neurais.

Palavras chave: Inteligência Artificial, Redes Neurais, Reconhecimento de emoções.



ABSTRACT

FRUTUOSO, L. J. Emotion recognition through the use of Neural Networks. 2021. 64 f.

Monografia  (Trabalho  de  Conclusão  de  Curso)  -  Escola  de  Engenharia  de  São  Carlos,

Universidade de São Paulo, São Carlos, 2021.

The  use  of  artificial  intelligence  is  widespread  in  the  most  diverse  technological

applications  nowadays.  In  a  society  where  the  interaction  between  human  beings  and

machines  occurs  in  increasingly  deep  ways,  the  comprehension  of  human  characteristics

becomes key for the machines.  In order  to  make this  interaction more efficient,  emotion

recognition can be seen as one of the cornerstones that compose the necessary information for

evaluating  the mental  state of a  person. This work has the objective  of training a neural

network capable of identifying human emotions,  using as the basis the dataset  of images

FER-2013.  In the literature  review,  concepts  of  the history  about  the  arise  of  the  neural

networks, their structure, how they work and commun problems revolving the subject are

approached. To obtain the data used in this work 66 nets were trained with hyperparameters

that appeared to be promising, by empirical evidence or by results of other authors. Then, the

concepts presented were used in the foundation about the explanation of the results and in the

process  of  choosing the  best  net  among  all  the  trained  ones,  which  showed  an  average

accuracy  of  47.17% in  the  test  dataset.  Even though  it’s  not  a  satisfactory  accuracy  for

practical application, it was obtained through the tunning of the hyperparameters showing,

clearly, their influence on the performance of the neural nets.

Keywords: Artificial Intelligence, Neural Networks, Emotion Recognition.
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1 INTRODUÇÃO

1.1 Apresentação do tema

A visão é uma ferramenta evolutiva adquirida,  ao longo de milhões de anos, pela

maioria das espécies de animais que habitam o planeta. Dentre os sistemas sensoriais, a visão

é, sem dúvida, um dos sentidos mais importantes para que o animal possa sobreviver no meio

em que habita. Isso ocorre porque suas chances de sobrevivência estão diretamente atreladas

à  quantidade  de  informações  que  ele  consegue  absorver  e  interpretar  sobre  o  ambiente

(JONES, 2014).

Apesar da sobrevivência humana frente às ameaças naturais do ambiente ser um desafio

passado, a informação obtida pelos sistemas sensoriais ainda possui extrema relevância e não

apenas para nós. As máquinas necessitam extrair e interpretar informações sobre o ambiente

de maneiras cada vez mais sofisticadas para realizarem tarefas cada vez mais complexas. Para

tal, o campo de estudo da visão computacional é essencial.

Visão  computacional  pode  ser  definida  como  um  campo  científico  que  extrai

informações  de  imagens  digitais  (MOINDROT,  2018).  Os  recentes  estudos  nesse  campo

possibilitaram  a  construção  de  diversas  aplicações  como,  por  exemplo,  sistemas  de

reconhecimento facial, análise médica de imagens, carros autônomos etc. 

Essas aplicações só se tornaram factíveis  através do uso da  Inteligência Artificial.

Que, de acordo com o próprio criador do termo, é definida como: “A ciência e engenharia de

produzir máquinas inteligentes, especialmente, programas inteligentes. Ela está relacionada

com a tarefa similar de usar computadores para entender a inteligência humana, porém a

Inteligência  Artificial  não  precisa  se  confinar  a  métodos  que  são  biologicamente

observáveis.” (MCCARTHY, 2004).

Os campos da Inteligência Artificial e Visão Computacional existem desde os anos

1950  e  1960,  respectivamente  (MOINDROT,  2018  e  ANYOHA,  2017).  A  Inteligência

Artificial  avançou de forma significativa  entre  1957 e 1974,  juntamente  com os  avanços

tecnológicos na capacidade de processamento e de memória dos computadores. Após esse

período, os avanços não atingiram as expectativas até 1997, quando a inteligência artificial

Deep Blue da  IBM derrotou o  campeão  mundial  de  xadrez  Gary Kasparov (ANYOHA,

2017).
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A técnica mais popular da atualidade utilizada no reconhecimento de imagens,  deep

learning,  surgiu  na  década  de  1980,  quando  o  termo  foi  introduzido  por  Rina  Dechter

(DECHTER, 1986). Porém, uma barreira limitou o avanço desse campo de estudo, a falta de

imagens disponíveis e devidamente classificadas para se trabalhar com as redes neurais.

Foi apenas entre 2009 e 2010 que ocorreu o marco divisor de águas no campo da

visão  computacional.  Com  o  avanço  e  popularização  de  aparelhos  como  smartphones  e

câmeras digitais,  o projeto  ImageNet (FEI-FEI et al,  2009) atacou o problema da falta de

dados  para  o  campo  de  estudo.  Classificando  e  disponibilizando,  em 2010,  mais  de  10

milhões de imagens contendo mais de 10 mil classes diferentes de objetos.

O projeto consiste  não apenas  na classificação destes dados,  mas também em um

desafio onde os participantes criam algoritmos com o objetivo de classificar automaticamente

as imagens. Um fato relevante ocorreu em 2012 com o artigo publicado por Alex Krizhevsky

que abordou o desafio ImageNet utilizando redes neurais convolucionais (KRIZHEVSKY et

al, 2012), que se mostrou uma abordagem muito mais promissora comparada às anteriores e

se tornou a mais utilizada até o presente momento. Nota-se um grande avanço na área em um

curto espaço de tempo. Em 2010 a taxa de erro na classificação das imagens do algoritmo

vencedor do desafio era de 28% e em 2017 o erro foi menor que 3%, conforme mostra a

Figura 1.

Figura 1 - Taxas de erro dos vencedores do desafio ImageNet entre 2010 e
2017.

Fonte: (LANGLOTZ et al, 2018).

Fonte: Langlotz (2018)
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Desde então houve uma popularização na utilização de técnicas de inteligência artificial,

não só no meio acadêmico, como também no meio industrial, financeiro, tecnológico e até

mesmo no âmbito pessoal com bibliotecas de uso livre, como Tensorflow e Keras produzidas

pelo Google LCC.

As pessoas estão se tornando cada vez mais  dependentes  destas  aplicações,  gerando

questões sobre como será um futuro não tão distante. Segundo Zuffo (2020), a relação do ser

humano com as máquinas  pode se tornar até mesmo simbiótica,  que de certa  forma já é

realidade em algumas aplicações médicas como o marcapasso, por exemplo. 

Num  horizonte  próximo,  possivelmente,  será  dado  um  passo  além.  Tecnologias

poderão viabilizar a comunicação direta com as máquinas através da atividade cerebral, como

demonstrado  na  apresentação  da  Neuralink  onde  um  macaco  jogou  o  videogame  Pong

utilizando um chip implantado diretamente no seu cérebro (WAKEFIELD, 2021).

Tendo uma proximidade tão grande com as máquinas, é importante ter em mente a

quantidade de informação que elas conseguirão obter sobre os seres humanos, incluindo suas

emoções.

1.2 Objetivos

 O objetivo deste trabalho é implementar um algoritmo de rede neural com aprendizado

profundo, para o reconhecimento de emoções humanas através de expressões faciais obtidas

por imagens classificadas em 5 emoções básicas: Neutralidade, tristeza, felicidade, medo e

raiva.

Esse objetivo será abordado através das seguintes etapas:

1 Implementação e treinamento de uma rede neural utilizando a base de dados

de imagens FER-2013 (KAGGLE, 2020).

2 Teste de acurácia através de experimentação com diferentes hiperparâmetros.
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2 REVISÃO BIBLIOGRÁFICA

2.1 Emoções

Segundo Izard (2010), a comunidade científica ainda não possui um consenso para a

definição de emoção. Porém, uma descrição consiste em: “circuitos neurais dos sistemas de

resposta e um estado de sensações que motivam e organizam cognição e ação”.

De fato, refletir sobre a possível definição de emoção é uma tarefa com complexidade

intrínseca.  Pensando apenas que as pessoas são muitas  vezes incertas  sobre suas próprias

emoções, poderiam elas classificar com clareza as emoções dos outros? E, mesmo assim,

muitas  vezes  elas  reconhecem  facilmente  quando  outras  pessoas  estão  tristes,  felizes,

assustadas etc. Como seria possível então tentar ensinar uma máquina a reconhecer emoções

humanas? 

Ekman et al. (1971), definiu seis emoções básicas: felicidade, surpresa, nojo, medo,

raiva e tristeza.  E propôs um método para reconhecê-las através das expressões faciais,  o

Facial  Affect  Scoring  Technique  (FAST),  onde  ele  propôs  que  as  expressões  faciais

correspondentes às emoções teriam componentes ou “itens” em comum.

A emoção  de surpresa,  por  exemplo,  teria  componentes  de  expressões  faciais  como

sobrancelhas levantadas, olhos abertos, boca aberta etc. Em uma abordagem similar, a rede

neural  será treinada com o intuito  de reconhecer  as emoções baseando-se nas expressões

faciais das imagens presentes na base de dados FER-2013 (KAGGLE, 2020).
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2.2 Imagens

Para  os  computadores,  imagens  são   matrizes  constituídas  por  Pixels  que  possuem

valores de 0 a 255, representando sua intensidade. Uma imagem colorida do tipo RGB, por

exemplo, é um versor de rank 3. Pois, a imagem é representada por uma matriz onde seus

elementos  possuem um valor  de 0 a  255 para cada um de seus canais  de cores  básicas,

vermelho, verde e azul (EARNSHAW, 2017).

Imagens em escala de cinza possuem apenas um canal. Na análise de imagens cujas

cores não são um fator relevante, o uso da escala de cinza possui uma vantagem com relação

ao custo computacional, já que não é necessário processar valores de intensidade de 3 canais.

2.3 Inteligência Artificial, Machine Learning, Neural Networks e Deep Learning

“Na sua  forma  mais  simples,  IA  (Inteligência  Artificial)  é  um campo que  combina

ciência  da  computação  e  robustos  conjuntos  de  dados,  possibilitando  a  solução  de

problemas.”  (IBM  Cloud  Education,  2020).  Partindo  dessa  definição  e  da  definição  de

McCarthy (2004), o campo da IA engloba o campo de Machine Learning, sendo este o estudo

que fornece às máquinas a capacidade de aprender sem serem explicitamente programadas

para isso (SAMUEL, 1959).

Dentro do campo de ML (Machine Learning), existem diversas técnicas, como  Naive

Bayes,  K-Means,  Support  Vector  Machines,  Neural  Networks, entre  outras.  As  Redes

Neurais, ou Neural Networks, são portanto um subcampo de estudo de ML. E, por sua vez,

aprendizado profundo, ou deep learning, é um subcampo de estudo de Redes Neurais. Essas

relações são representadas no diagrama da Figura 2.

Figura 2 - Diagrama dos campos de estudo abordados.

Fonte: Autoria própria.
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O paradigma  comum a  todas  as  técnicas  de  Machine  Learning  que  tornam esses

campos  de  estudo tão  interessantes  é  a  inversão  no fluxo dos  algoritmos.  Os algoritmos

comuns  recebem  um  determinado  input  e  são  programados  de  maneira  específica  para

produzirem um output, já os algoritmos de  Machine Learning tem especificados tanto seus

inputs  quanto  seus  outputs  e  são  programados  de  forma  que  possam  automaticamente

produzir uma maneira de fornecer esses outputs. Com a esperança de que, futuramente, essa

maneira responda bem em um contexto generalizado.

2.4 Tipos de aprendizado

Segundo  Delua  (2021),  existem  duas  abordagens  básicas  utilizadas  no  campo  de

Machine Learning,  o aprendizado supervisionado e o não supervisionado.  O aprendizado

supervisionado é feito através de inputs e outputs já conhecidos, o não supervisionado se dá

pelo uso apenas de inputs e não fornece outputs conhecidos.

Para problemas de classificação e regressão são mais comuns os usos de aprendizagem

supervisionada,  trabalhos  com  análise  de  sentimentos  são  geralmente  abordados  como

problemas de classificação. Problemas de agrupamento ou  clustering utilizam aprendizado

não supervisionado,  onde o principal  objetivo  é  observar  relações  e  padrões  entre  dados

disponíveis, como trabalhos de detecção de anomalias.

2.5 Estrutura das Redes Neurais

A unidade básica de uma Rede Neural conhecida como nó, neurônio,  ou perceptron

surgiu a partir  de uma estrutura desenvolvida por Frank Rosenblatt  em 1957 (NIELSEN,

2015). Seu objetivo, na época, era explicar como a memória era armazenada em sistemas

biológicos,  sendo o perceptron a unidade básica do seu “brain  model”,  que consistia  em

unidades  conectadas  formando uma rede.  Onde cada  uma delas,  ao  receber  um sinal  de

entrada, responde gerando um sinal de saída que pode ser transmitido, através de conexões,

para um grupo seleto de unidades receptoras (ROSENBLATT, 1961).
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Figura 3 - Estrutura de um perceptron com 3
entradas.

Fonte: Nielsen (2015).

O  perceptron  possui  uma  estrutura  como  a  representada  na  Figura  3,  este  em

específico recebe 3 entradas. A saída gerada possui valores binários, 1 ou 0, a maneira que

Rosenblatt utilizou para computar essa saída foi através de pesos ou weights, números reais

que atribuem a importância das conexões. Generalizando para mais do que 3 entradas, o valor

de entrada no neurônio é dado pela soma do produto das saídas dos perceptrons da camada

anterior e seus respectivos pesos, se o valor obtido ultrapassar um limite estabelecido a saída

do perceptron é 1, sinalizando que ocorreu uma ativação, caso contrário, sua saída possui o

valor 0, indicando uma inativação.

Sendo x j e w j as saídas dos perceptrons da camada anterior e os pesos das conexões,

respectivamente. Temos que a saída de um perceptron é dada por:

                     
(1)

A diferença crucial entre o perceptron, ou neurônio, das redes utilizadas atualmente está

no modo  que  é  computada  sua  saída.  Diferente  dos  perceptrons  de  Rosenblatt,  que  não

possuem níveis intermediários de ativação, os neurônios atuais possuem um valor de saída

sendo  um  número  real  entre  0  e  1.  Essa  característica  proporciona  uma  propriedade

fundamental de que pequenas alterações nos pesos causam pequenas alterações nas saídas dos

neurônios.  E,  como  será  visto  mais  adiante,  essa  é  a  propriedade  que  torna  possível  o

aprendizado das redes.

Estruturalmente, as redes neurais consistem de camadas de neurônios, que nada mais são

do que números reais representando suas “ativações”, interligados por pesos, que também são

Fonte: Nielsen (2015)



12

números reais, cuja função é atribuir relevância entre as conexões. Uma Rede Neural possui

no  mínimo  3  destas  camadas,  uma  camada  de  entrada,  uma  camada  intermediária

“escondida” chamada de hidden layer e uma camada de saída. As Redes Neurais Profundas

ou Deep Neural Networks são redes com mais de uma hidden layer. Essa estrutura pode ser

observada na Figura 4.

Figura 4 - Estrutura de uma rede neural completamente conectada.

Fonte: Nielsen (2015)

As Redes Neurais também podem ser completamente conectadas, onde a saída de cada

neurônio é uma das entradas de cada um dos neurônios da camada seguinte, ou podem ser

parcialmente  conectadas,  onde a  afirmação  anterior  não é  satisfeita.  Neste  trabalho serão

abordadas apenas as redes completamente conectadas ou fully connected networks.

2.6 Funcionamento das Redes Neurais

2.6.1 Passagem de informação: forward propagation ou feedforward

A  propagação  de  informação  nas  redes  tratadas  neste  trabalho  se  dá  de  maneira

sequencial de uma camada para a outra e é chamada de forward propagation ou feedforward,

essa ideia se mantém semelhante a técnica utilizada por Rosenblatt (1961) e se dá por duas

etapas. 

● Entrada de informação no neurônio pela soma das saídas dos neurônios anteriores

multiplicadas pelos seus respectivos pesos, somado também um bias.
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● Aplicação de uma função de ativação que resulta na saída do neurônio e será utilizada

para obter a entrada nos neurônios da camada subsequente.

Com exceção da camada de entrada que recebe os dados a serem analisados, todos os

neurônios dependem das saídas dos neurônios anteriores, essa relação se dá pela equação 2.

                            input=b+∑
k

xk w k (2)

Pode ser visto que a equação 2 é praticamente análoga a equação de Rosenblatt (1961),

tendo como diferença apenas o fator do bias, sendo este mais um parâmetro ajustável para a

rede.  O  bias pode ser interpretado como um viés de ativação,  quando o valor  do  bias  é

bastante positivo há uma maior facilidade da ativação do seu neurônio, quando é negativo há

uma maior dificuldade desta ativação (NIELSEN, 2015).

Computada  a  entrada  do  neurônio,  sua  saída  será  dada  aplicando  uma função  de

ativação. Diferentemente da saída proposta para o perceptron através de uma função degrau,

as  funções  de  ativação  são  um grupo  de  funções  que  fornecem uma saída  com valores

contínuos que possuem propriedades semelhantes a ela.

             σ (z)=
1

1+e−z (3)

A função sigmóide (Equação 3) é uma das mais comuns, quanto maior seu valor de

entrada  mais  ela  se  aproxima do valor  unitário,  e  quanto  menor  o valor  de entrada,  seu

resultado se aproxima a zero, como pode ser observado na Figura 5.
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Figura 5 - Sigmoid vs Step Function.

O aspecto fundamental da função sigmóide como já comentado antes é a propriedade de

assumir valores contínuos entre zero e um. Isso permitirá o uso do algoritmo de  backward

propagation ou backpropagation, que será abordado posteriormente.

Um resumo esquemático do algoritmo de  feedforward  pode ser visto na Figura 6,

onde,  após  todo  o  processo  descrito,  a  saída  do  neurônio  será  utilizada  na  entrada  dos

neurônios da camada seguinte, por se tratar de uma rede completamente conectada.

Figura 6 - Configuração esquemática de feedforward para um neurônio.

2.6.2 Função de custo, perda ou objetiva

Em problemas de aprendizado supervisionado é possível calcular a diferença entre o

output fornecido pela rede e o seu valor esperado. Essa diferença é calculada através de uma

Fonte: Matthew (2020).

Fonte: Calebe (2019)
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função  vista  na  literatura  como  Loss  Function,  Cost  Function  ou  Objective  Function

(NIELSEN, 2015).

Uma delas é o erro quadrático médio (EQM), a  quadratic cost function  é dada pela

equação 4.

C (w , b)=
1

2n
∑

x

( y (x)−a)² (4)

Sendo  w  e  b todos os  pesos  e  biases  da rede,  respectivamente,  n é  o número de

amostras de treino, x é o input de uma única amostra, y (x ) é o output esperado em relação ao

input  x e  a é o output fornecido pela rede. Note que a notação utilizada difere da figura 6,

agora o output do neurônio é dado pela variável a e y representa o output real que deveria ser

observado.

Outra  função  de  custo  também muito  utilizada  é  a  cross-entropy  cost,  dada  pela

equação 5.

C (w ,b)=
−1
n

∑
x

[ yln(a)+(1− y) ln(1−a)] (5)

Como  y (x ) é um valor já conhecido para cada input,  o único valor que pode ser

alterado é a saída a fornecida pela rede, que é função dos pesos e biases. Então, o objetivo é

modificar  estes  dois  parâmetros,  chamados  de  parâmetros  de  aprendizado,  de  forma  a

minimizar  a função de custo. Para isso, é utilizado o método da descida do gradiente ou

gradient descent.

2.6.3 Gradient descent.

“O que queremos dizer quando falamos que uma rede está aprendendo é apenas que

ela está minimizando uma função de custo.” (SANDERSON, 2017).

Gradient descent é um método iterativo utilizado para minimizar funções de múltiplas

variáveis. Dado um ponto de ínicio da função, a cada iteração é calculado o seu gradiente

neste ponto, em seguida, o gradiente é multiplicado por um escalar negativo (chamado em

ML de learning rate) e então somado ao ponto inicial resultando dessa maneira em um novo

ponto,  onde  o  processo  será  repetido.  A equação  6  demonstra  de  maneira  mais  geral  o

método.
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           vn+1=vn−η∇ f (vn) (6)

Sendo f (v ) uma função de múltiplas variáveis, v=v1 , v2 ,.. .. 

Dois pontos importantes a se notar neste método, são: 

● O gradiente  dá  a  direção  de  maior  variação  na  superfície  f ,   um  escalar

positivo resultaria em uma tendência de maximizar a função.

● Não  há  garantia  de  convergência  para  o  mínimo  global,  apenas  mínimos

locais.

O segundo ponto é o mais importante, pois ele está relacionado com o hiperparâmetro

learning rate na equação, dado por η . Enquanto não há o que possa ser feito com relação à

garantia  de  encontrar  apenas  mínimos  locais,  a  escolha  do  learning  rate afeta

consideravelmente os resultados da rede. Uma vez que um η grande pode tirar a convergência

de um mínimo local e levá-la a outro, torná-lo o menor possível é importante para evitar que

isso aconteça. Mas, ao torná-lo pequeno, serão necessárias mais iterações para a convergência

e, consequentemente, um maior custo computacional. Este e outros pontos de otimização e

boas práticas serão abordados posteriormente.

Então, aplicando  gradient descent  na função de custo, seus componentes serão dados

pelas equações 8 e 9.

               ∇ C=(
∂C
∂ w

,
∂C
∂b

) (7)

               wn+1=wn−η
∂C
∂wn

               (8)

               bm+1=bm−η
∂C
∂bm

(9)



17

Aplicar este método se mostrou uma tarefa extremamente desafiadora. Pois, é necessário

encontrar a derivada parcial da função de custo em relação a cada um dos pesos e cada um

dos  biases.  Sendo que  as  redes  neurais  de  hoje  chegam a  ter  facilmente  milhões  desses

parâmetros, acaba sendo inviável a abordagem de um cálculo analítico de cada uma dessas

derivadas individualmente e também muito custoso um processo numérico de aproximação

delas.

O  algoritmo  que  solucionou  este  problema  e  que,  segundo  Nielsen  (2015),  é

responsável pelo avanço das redes neurais visto nos dias de hoje, só ganhou relevância após a

publicação  de  um  paper  em  1986  (RUMELHART,  1986),  tal  algoritmo  é  chamado  de

backpropagation.

2.6.4 Convenções adotadas

Antes  de  abordar  o  tópico  backpropagation serão  definidas  algumas  convenções

adotadas por Nielsen (2015).

● O peso que conecta dois neurônios terá  notação  w jk
l  onde  jé o número do

neurônio da camada l e k  é o número do neurônio da camada anterior (l−1).

● O bias de um neurônio é denotado por  b j
l , sendo l a camada em que ele se

encontra e j o seu número nesta camada.

● A saída  de  um  neurônio  será  denotada  de  forma  similar  ao  bias,  onde  j

representa o número do neurônio na camada l, sendo representada então por a j
l

. A saída do neurônio também pode ser denominada como sua ativação.

Agora é possível generalizar a ativação de um neurônio pela equação 10.

                     a j
l
=σ (∑k

w jk
l ak

l−1
+b j

l

)               (10)

Sendo  σ  a função de ativação,  a expressão  ∑
k

w jk
l ak

l−1
+b j

l  pode ser denominada pela

variável z j
l  chamada de weighted input, tornando a equação 10 mais compacta. 

               a j
l
=σ ( z j

l ) (11)
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Nota-se  que  são  equações  repletas  de  índices,  isso  por  estarem sendo  considerados

neurônios individuais. Para que seja possível escrevê-las de forma matricial, serão definidas

duas representações adotadas e o produto de Hadamard.

● A aplicação de uma função em um vetor não é definida na matemática, mas

convenciona-se neste trabalho que uma função aplicada a um vetor nada mais

é que aplicar a função em cada um dos seus elementos.

● De maneira similar, a derivada de um vetor será dada pela derivada de cada

um dos seus elementos.

● O produto de Hadamard é menos usual, porém é definido na matemática como

o produto de elemento por elemento de uma matriz e é denotado pelo símbolo

s⊙ j sendo  s e  j matrizes  de  mesmas  dimensões  (NIELSEN,  2015;

MILLION, 2007).

De maneira mais elegante a equação 10 pode ser reescrita com a notação de vetores e

matrizes pela equação 12, considerando as convenções acima. 

                   Al
=σ (W l Al−1

+Bl
) (12)

Sendo, Al o vetor de ativações de j neurônios da camada l, W la matriz de dimensões

j × k com todos os pesos que conectam a camada l com sua antecessora l−1,  Al−1 o vetor de

ativações de k  neurônios da camada l−1e Blo vetor de bias dos j neurônios da camada l. 

De  maneira  análoga  à  equação  12,  podemos  reescrever  a  equação  11,  onde

Zl
=W l A+B l representa o vetor de weghted inputs da camada l.

               Al
=σ (Z l

) (13)

2.6.5 Backpropagation

Como visto anteriormente, a função degrau, utilizada por Rosenblatt (1961), não possuía

uma  característica  fundamental  para  a  aplicação  do  método  gradient  descent,  ela  não  é

contínua e, portanto, não é diferenciável.

O algoritmo de  backpropagation é uma maneira inteligente de computar as derivadas

parciais da função de custo em relação aos parâmetros de aprendizado de uma rede (seus

weights e biases).
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Observa-se que a ativação de uma camada é dependente de todas as camadas anteriores,

com exceção da camada de input dos dados. Sendo Al o vetor de ativações da última camada

de uma rede com input X , a aplicação sucessiva da equação 12 descreve a dependência entre

as camadas e é representada pela equação 14.

          A l
=σ (W l σ (W l−1 σ (...W 2 σ (W 1 X+B1

)+B2
)+Bl−1

)+Bl
) (14)

Dessa forma, nota-se que a saída de cada camada é uma função composta e, portanto,

para encontrar  a  derivada parcial  da função de custo em relação a  um peso específico  é

necessário aplicar a regra da cadeia, como demonstrado na equação 15 e ilustrado na figura 7.

               
∂C

∂ w jk
l = ∑

mnp ...q

∂C

∂am
L

∂am
L

∂ an
L−1

∂an
L−1

∂a p
L−2 ...

∂aq
l+1

∂ a j
l

∂a j
l

∂w jk
l

(15)

Figura 7 - Representação da derivada parcial do custo em relação a w jk
l .

Não é necessário esforço para demonstrar o motivo das redes neurais dependerem de um

algoritmo  que simplifique  este  processo.  Baseado na  mesma abordagem da  passagem de

informação do  feedforward, a ideia do  backpropagation consiste em propagar o valor das

derivadas necessárias e, posteriormente, a descida do gradiente partindo da última camada

para a primeira, computando o seu efeito em cada uma delas. 

A adaptação  de  uma abordagem proposta  por  Aflak  (2018),  similar  a  de  Nielsen

(2015), permite visualizar seu funcionamento com mais clareza. Subdividindo uma camada

Fonte: Nielsen (2015).
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qualquer  l em duas, uma denominada de dense layer e outra de activation layer o fluxo de

informação no feedforward pode ser representado na figura 8.

Figura 8- Feedforward em uma camada l dividida em dense layer e activation layer.

Sendo a dense layer a camada cuja entrada é o vetor de ativação de k  neurônios de Al−1

que se ligam a  j neurônios da camada  Al , sua saída é  Zl, o vetor de  weighted inputs. E

activation layer a camada que apenas aplica a função de ativação em todos os elementos do

vetor Zl resultando na saída Al.

Figura 9 - Representação do feedforward e backpropagation em uma camada l subdividida.

De maneira análoga, o backpropagation é representado no fluxo da figura 9, pelas setas

localizadas  na  sua  parte  inferior  e,  a  partir  da  análise  de  ambas  as  camadas,  serão

apresentadas as 4 equações necessárias para sua aplicação.

Fonte: Adaptado de Aflak (2018).

Fonte: Adaptado de Aflak (2018).
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● Dense Layer

Figura 10 - Representação da Dense Layer

Foram retirados os índices da camada para fins de simplificação na notação, uma vez

que a camada é arbitrária. O vetor Z é dado pela equação 16.

(16)

A equação 16 pode ser reescrita de forma matricial, como mostra a equação 17.

(17)

Dado um peso qualquer  w cd, a derivada parcial do custo C em relação a  w cd é dada

pela equação 18.

Fonte: Adaptado de Aflak (2018).
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(18)

O único z cuja derivada parcial da equação 18 não é zero é o zc correspondente ao peso

w cd, pois esse é o único elemento de  Z que depende de  w cd e o valor desta derivada é a

ativação correspondente  ad. Então, simplificando, a derivada parcial do custo em relação a

qualquer peso é dada pela equação 19.

            

(19)

Representando todas as derivadas parciais do custo em relação a todos os pesos em

uma matriz pela equação 20, e reescrevendo-a em forma de um produto matricial, chega-se à

primeira das quatro equações fundamentais para o método, a equação 21.

(20)

                  

(21)

Partindo da equação 17, de maneira análoga à derivada parcial do custo em relação aos

pesos, é possível obter a derivada parcial do custo em relação aos biases, representada pela

equação 22.
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(22)

Assim como os pesos, a única derivada parcial que não é zero é a de zc correspondente

ao bias bc, e essa por sua vez é igual a 1, já que não há nenhum fator que o multiplica. Então,

obtém-se a equação 23, a segunda equação necessária.

            

(23)

 Foram  obtidas  as  matrizes  com  as  derivadas  parciais  necessárias  para  atualizar  os

parâmetros de aprendizado no método da descida do gradiente. A dense layer ainda fornecerá

a terceira  equação necessária para o  backpropagation,  a derivada do custo em relação às

entradas, representada pela equação 24.

(24)
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Trabalhando com a derivada parcial do custo em relação uma entrada arbitrária  ac,

pela equação 25.

(25)

Todos os termos da equação 25 são diferentes de zero, pois o fator ac está presente em

todos os elementos do vetor Z, e a derivada parcial de qualquer zd em relação a ac é o peso

wdc que conecta o neurônio c da camada anterior ao neurônio d  da camada atual, resultando

na equação 26.

(26)

O vetor 
∂ C
∂ A

 pode ser escrito como o produto entre a transposta dos pesos e o vetor de

derivadas parciais do custo em relação aos weighted inputs, obtendo a equação 27, a terceira

das quatro necessárias.

(27)
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A quarta e última equação necessária para o backpropagation será obtida pela análise

da activation layer.

● Activation Layer

Figura 11 - Representação da Activation Layer.

Na camada de ativação, não há parâmetros de aprendizado para atualizar,  ela apenas

aplica  a  função de  ativação  em todos  os  weighted  inputs que  ela  recebe  da  dense layer

resultando na saída que será utilizada como entrada pela próxima  dense layer. Então resta

apenas uma relação necessária a ser encontrada, a derivada parcial dos  weighted inputs  em

relação ao custo na camada de ativação.

Agora  Z é  o  vetor  de  entradas  da  camada  de  ativação,  a  derivada  parcial  de  seus

elementos em função do custo pode ser representada pela equação 28.

            

(28)

Fonte: Adaptado de Aflak (2018).
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Esse  vetor  pode  ser  representado  pelo  produto  de  Hadamard  e  as  ativações  estão

relacionadas aos weighted inputs pela equação 11, por a=σ (z). Resultando na equação 29, a

quarta e última equação necessária.

(29)

Em  resumo,  todas  as  equações  utilizadas  na  dense  layer dependem  apenas  das

derivadas  parciais  representadas  pelo  vetor  
∂C
∂ Z

,  obtidos  os  seus  valores  é  possível

implementar computacionalmente o cálculo da derivada parcial do custo em relação a todos

os pesos e biases de maneira simples, através das igualdades 
∂C
∂W

=
∂C
∂ Z

AT  e 
∂C
∂ B

=
∂ C
∂Z

 , das

equações  21  e  23,  respectivamente.  Essas  duas  equações,  são  as  únicas  necessárias  para

atualizar os pesos e biases na aplicação da descida do gradiente.

As outras duas equações apresentadas são as que dão continuidade ao ciclo. Uma vez

obtida a derivada parcial do custo em relação aos weighted inputs 
∂C
∂ Z

 da dense layer poderá

ser obtida a derivada parcial  do custo em relação às ativações de entrada da  dense layer,

∂ C
∂ A

=W T ∂ C
∂ Z

 (Equação 27), ela será equivalente a derivada parcial do custo em relação às

ativações de saída da activation layer da camada anterior. Obtida a derivada parcial do custo

em relação às ativações da saída, 
∂ C
∂ A

, da activation layer é possível obter 
∂C
∂ Z

=
∂ C
∂ A

⊙σ ´ (Z )

(Equação 29), que nada mais é do que a derivada parcial do custo em relação aos weighted

inputs para a dense layer, seguindo para as demais camadas de maneira sucessiva.

Então, da mesma maneira que estabelecidos os pesos e biases iniciais, basta fornecer
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o input para que ocorra a etapa de propagação de informação da primeira para última camada,

ou feedforward, basta fornecer na última camada o valor da derivada da função de ativação

em relação aos  weighted inputs do vetor  Z ,  σ ´ (Z ),  e a derivada da função de custo em

relação às ativações 
∂ C
∂ A

, para que ocorra a etapa de backpropagation.

Fornecidos esses valores da última camada, essas 4 equações são aplicadas de forma

sucessiva até a primeira camada. Em seguida é realizado método da descida do gradiente, em

todos os elementos da matriz  de pesos e da matriz  de biases, camada por camada,  como

representado  pelas  equações  30  e  31,  respectivamente,  que  nada  mais  são  do  que  a

representação matricial das equações 8 e 9.

               W n+1=W n−η
∂C

∂W n
(30)

               Bm+1=Bm−η
∂C
∂ Bm

(31)

Ao realizar  esse  processo  a  função  de  custo  tenderá  à  um mínimo  local,  e  os

parâmetros de aprendizado serão ajustados para obter um maior número de outputs  Al que

coincidam com o output esperado  Y ( X),  para todas as entradas  X  fornecidas na base de

dados de treino da rede. O número de vezes que isso deve ser repetido (epochs), o valor do

learning rate, os valores iniciais dos parâmetros de aprendizado serão abordados a seguir.

2.7 Hiperparâmetros, otimizações e boas práticas

O intuito de treinar uma rede neural é que ela obtenha sozinha seus parâmetros de

aprendizado  que  permitam  fornecer  os  outputs  desejados.  Porém,  os  parâmetros  como

learning  rate,  número  de  epochs,  mini  batch  size,  valores  iniciais  dos  parâmetros  de

aprendizado,  número de  neurônios  ou  número de  camadas,  são  parâmetros  estabelecidos

manualmente na implementação da rede neural e são denominados como hiperparâmetros.

Eles serão abordados um a um com suas possíveis otimizações e boas práticas.

2.7.1 Learning rate

O  learning rate representado nas equações  anteriores  por  η é  o escalar  que altera  o

tamanho da variação dos parâmetros de aprendizado para cada iteração do gradient descent.
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Como pode ser visto nas equações 30 e 31, cada peso e cada bias será subtraído pela derivada

parcial do custo em relação a ele multiplicada por  η, o que torna tentador atribuir valores

altos a esse escalar, dessa maneira aumentando a velocidade com que se chega no mínimo

local. 

Porém, ao fazer isso, provavelmente não haverá convergência para um mínimo local.

A função  de  custo  pode  acabar  sendo levada  para  outros  mínimos  locais  sem conseguir

permanecer  em  algum  deles  e,  mesmo  que  consiga,  ela  possivelmente  não  apresentará

convergência dentro deste mínimo local. Ela ficará oscilando ao se aproximar do mínimo,

como pode ser representado visualmente na figura 12.

Figura 12 - Não convergência por um learning rate
com valor alto

Para que isso seja  evitado  pode-se adotar  um valor  pequeno para  este  parâmetro,

porém a convergência se dará de maneira muito mais lenta, principalmente se a função a ser

minimizada possuir milhões de variáveis, como pode ser representado na figura 13.

Fonte: https://bit.ly/3i5zAN8
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Figura 13 - Convergência com learning rate menor.

Segundo Yan-Tak (2018),  uma abordagem comum é adotar  η=0.01/n,  sendo  n o

número de amostras de treino utilizadas, como um valor inicial e ir realizando ajustes finos

através de testes. O objetivo é obter um valor que cause uma convergência rápida e para um

intervalo de valores razoável, que varia de aplicação para aplicação, uma convergência ideal

pode ser representada pela figura 14.

Figura 14 - Representação de uma convergência
otimizada.

Fonte: https://bit.ly/3i5zAN8

Fonte: https://bit.ly/3i5zAN8
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2.7.2 Epochs

Epochs, ou épocas de treino, é apenas o número predeterminado de vezes que o ciclo

feedforward e backpropagation será repetido para os inputs de treino fornecidos. O número

de  épocas  necessárias  varia  bastante  e  esta  quantidade  está  atrelada  a  um  dos  maiores

problemas das redes neurais, o overfitting, que será abordado posteriormente.

2.7.3 Stochastic gradient descent e mini batch size

Quando se aplicam os métodos de backpropagation e gradient descent, o mais usual é

determinar o learning rate como um escalar arbitrário α , com valor inicial de 0.01, dividido

pelo número  n de amostras da base de dados de treino que será utilizado pela rede para

atualizar os parâmetros de aprendizado, como pode ser observado pela equação 32.

               η=
α
n

(32)

Idealmente,  a cada  epoch,  o  gradient  descent  é aplicado em todas as amostras do

conjunto de treino. Porém, isso pode tornar o treino da rede substancialmente mais lento, para

contornar este problema é utilizado um método denominado stochastic gradient descent. Ele

consiste em organizar o conjunto de dados de treino aleatoriamente e, em seguida, dividi-lo

em mini batches com um número arbitrário de amostras com tamanho denominado de mini

batch size.

Então, é aplicado o método  gradient descent sobre essa amostra consideravelmente

menor,  o  que  traz  ganhos  de  tempo  e  custo  computacional.  Segundo  Bottou  (2012),  a

convergência deste método é quase sempre garantida em condições moderadas e seu valor

médio  é  aproximadamente  igual  ao  valor  médio  obtido  utilizando-se  todas  as  amostras

disponíveis.

Segundo Bengio (2012), são usualmente utilizados valores de mini batch size sendo

potências de 2 partindo de 32 até 512. No paper de Keskar et al (2017), os pesquisadores

observam indícios de que mini batches maiores degradam a qualidade do modelo em questão

de capacidade de generalização.

2.7.4 Valores iniciais dos parâmetros de aprendizado

Segundo Nielsen  (2015),  uma abordagem comum é  inicializar  uma rede  com pesos

aleatórios e biases com valor zero. Uma vez que a derivada parcial do custo em relação aos
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biases é dependente apenas da derivada parcial  do custo em relação aos  weighted inputs,

zerar  seus  valores  iniciais  ainda  permitirá  sua  atualização  normalmente.  Isso  já  se  torna

inviável para os pesos, se seu valor inicial for zero, todas as ativações serão zero e a rede não

terá a capacidade de aprender.

Porém,  há  maneiras  melhores  de  iniciar  os  pesos  do  que  apenas  atribuir  valores

aleatórios sem análise prévia. Um bom método para inicializá-los é atribuir a eles valores de

uma distribuição  normal  com média  0 e  desvio  padrão  1/√n,  por  conta  da saturação do

neurônio, que será abordada posteriormente. Mas, a ideia é que pesos mais concentrados em

um intervalo de valores  auxiliam no aprendizado da rede.

2.7.5 Número de neurônios e camadas

A quantidade  de  parâmetros  de  aprendizado  é  definida  pelo  número  de  camadas  e

neurônios em cada uma delas. Quanto mais parâmetros de aprendizado uma rede possuir,

mais ela conseguirá “se moldar” aos dados do conjunto de treino. Mas, não necessariamente,

isso é benéfico por conta de um fenômeno denominado como overfitting que, essencialmente,

prejudica a capacidade da rede de generalização.

Segundo Brownlee (2018), não há uma heurística para o número de neurônios que

devem  existir  em cada  camada  ou  o  número  de  camadas  que  devem  constituir  a  rede,

pesquisar  por  papers  sobre  problemas  similares  pode ser  um bom ponto  de  partida  para

atribuir o número inicial de neurônios e camadas na arquitetura utilizada.

As redes deste trabalho terão no máximo duas camadas, por conta de um problema

denominado vanishing gradient que está relacionado às funções de ativação e será abordado

posteriormente.

2.8 Problemas comuns das redes neurais

2.8.1 Saturação do neurônio

Ao iniciar o treino de uma rede neural atribuindo aos pesos valores aleatórios, muito

provavelmente os neurônios da camada de saída da rede fornecerão valores distantes  dos

valores esperados, o que é esperado. Porém, caso algum neurônio de saída tenha valores

muito próximos a 1 ou a 0, sendo sua função de ativação a sigmóide e sua função de custo o

EQM, ocorrerá um fenômeno denominado de saturação do neurônio.
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Esse fenômeno ocorre por conta da derivação da sigmóide na etapa de backpropagation,

dada pela equação 33, onde pode-se observar que se z for grande o suficiente para que σ (z)

se aproxime de 1,  o  valor  da derivada  se aproximará  de  zero.  E caso  z seja  pequeno o

suficiente para que σ (z) se aproxime de zero, o valor da derivada sofrerá o mesmo efeito.

                  σ ´ (z)=σ ( z)(1−σ ( z)) (33)

Com a função de custo EQM, a derivada parcial  do custo em relação a  um peso é

dependente da derivada da sigmóide, como pode ser visto pela equação 34. Dessa forma, se

σ ´ (z) for próximo de zero, a taxa de aprendizado dos pesos atrelados a este neurônio será

próxima de zero tornando-os irrelevantes para o aprendizado da rede. Isso causa uma lentidão

no aprendizado ou learning slowdown.

                  
∂C
∂ w

=(a− y )σ ´ (z)x (34)

Para contornar essa limitação, a função de custo mais utilizada, dado que a função de

ativação é a sigmóide, é a cross-entropy cost (equação 5). Pois, sua derivada em relação aos

pesos, equação 35, não depende da derivada da sigmóide.

                  
∂C
∂ w j

=
1
n
∑

x

x j(σ (z)− y) (35)

Ao escolher essa função de custo, o problema é resolvido para a saturação dos neurônios

da camada de saída,  porém, esse mesmo problema pode ocorrer  nas  hidden layers.  Se o

weighted  input  z de  qualquer  neurônio  for  um valor  que  torne  a  derivada  da  sigmóide

próxima de zero os pesos atrelados a esse neurônio sofreram o mesmo learning slowdown.

Infelizmente para esse problema nas hidden layers a alteração da função de custo para cross-

entropy cost não causa nenhum efeito, já que inevitavelmente será utilizada a derivada da

sigmóide na etapa de backpropagation.

Uma maneira  de tentar  suprimir  esse problema é na inicialização dos pesos e  como

descrito anteriormente,  um bom método para fazer isso é iniciá-los como valores de uma

distribuição normal com média 0 e desvio padrão 1/√n. Se os pesos iniciais tomarem valores

suficientemente maiores que 1 ou menores que -1, haverá um fator multiplicativo nas suas

conexões, que pode causar um weighted input resultante grande o suficiente (tanto positivo

quanto negativo)  para saturar  o neurônio.  Tornar  os pesos iniciais  mais  concentrados em
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torno  da  média  0  auxilia  diminuindo  a  quantidade  de  neurônios  em  que  isso  ocorre

(NIELSEN, 2015).

2.8.2 Overfitting e underfitting

Quando a rede neural  continua  a  melhorar  sua acurácia  no conjunto  de dados de

treino,  mas não apresenta  melhorias  de  acurácia  no  conjunto  de  dados  de  teste,  ela  está

adaptando seus parâmetros para obter especificamente os outputs esperados do seu conjunto

de treino, o que causa um grande problema. Se a rede se especializar em encontrar os outputs

esperados, não desempenhará bem de forma generalizada em dados desconhecidos,  isso é

denominado overfitting. 

Por isso ele é o fenômeno dominante na escolha do número de epochs ou épocas de

treino,  assim  que  não  houver  mais  uma  melhoria  na  acurácia  dos  dados  de  teste  é

recomendável  parar  o  treinamento  da rede.  Pois,  dali  em diante a  rede apenas  aprenderá

peculiaridades  do seu conjunto  de dados de treino,  este  método é conhecido como  early

stopping.

Underfitting é exatamente o contrário, parar o treino de uma rede sem que ela alcance

o máximo de acurácia no conjunto de testes prejudicará seu desempenho em novos dados,

uma vez  que  ela  ainda  poderia  aprender  mais  sem perder  sua  generalização  (NIELSEN,

2015).

2.8.3 Vanishing Gradient

Em uma das etapas de execução do backpropagation ocorre uma multiplicação pela

derivada da sigmóide para cada uma das camadas da rede. A função sigmóide possui valores

entre 0 e 1 e sua derivada também, como pode ser visto na equação 33. Este fato causará um

efeito de diminuição no gradiente a cada camada presente na rede, de maneira exponencial.

Sendo o gradiente cada vez menor, a atualização dos parâmetros de aprendizado se

tornará  cada  vez  mais  lenta.  Portanto,  é  necessário  tomar  um grande  cuidado  com esse

problema,  principalmente  em  redes  neurais  profundas  com  muitas  camadas  (NIELSEN,

2015).
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2.9 Categorical Encoding

Como a rede neural utilizada neste trabalho utiliza aprendizado supervisionado (inputs e

outputs são fornecidos) e o problema abordado é um problema de classificação das emoções,

uma técnica denominada encoding precisa ser aplicada para viabilizar o treinamento da rede.

Encode significa  “modificar  informação  de  forma que  possa  ser  processada  por  um

computador” (ENCODE, 2021).  Categorical Encoding é apenas a representação de dados

categóricos  por  números  ou  vetores  que  serão  utilizados  pela  rede  no  processo  de

treinamento.

Uma  variável  categórica  é  uma  variável  cujos  valores  são  representados  por

classificações.  A  variável  “cor”,  por  exemplo,  pode  assumir  valores  classificados  como

“azul”, “verde” e “vermelho”. Essa variável pode ser representada pelo método de One Hot

Encoding como um vetor binário de 3 posições, onde cada um deles representa uma cor e

poderia  ser  visto  como:  Azul  =  [1,0 ,0],  Verde  =  [0 ,1 , 0],  Vermelho  =  [0 ,0 ,1]

(BROWNLEE, 2019).

Este método é particularmente útil em redes neurais, já que a camada de saída nada mais

é do que um vetor com valores entre 0  e 1, onde a posição de maior valor indicará a sua

categoria.  Dessa forma, se a saída de uma rede treinada para detectar cores em um pixel

assumir o valor [0.89 ,0.13 , 0.06 ], ela indica que o pixel possui a cor azul, caso seja o valor

correto, significa que o output esperado é, de fato, o vetor [1, 0 , 0].
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3 METODOLOGIA

3.1 Base de dados

Para o treinamento das redes neurais foi utilizada a base de dados FER-2013 (KAGGLE,

2020). Ela consiste em mais de 30 mil imagens em escala de cinza de 48x48 pixels divididas

em um conjunto de treino e um conjunto de teste, classificadas em 7 emoções: Raiva, nojo,

medo, felicidade, tristeza, surpresa e neutralidade. Distribuídas de acordo com as tabelas 1 e

2.

Tabela 1 - Quantidade de imagens por emoção no conjunto de Treino.

Emoção Quantidade de imagens

Raiva 3995

Nojo 436

Medo 4097

Felicidade 7215

Neutralidade 4965

Tristeza 4830

Surpresa 3171

Tabela 2 - Quantidade de imagens por emoção no conjunto de Teste.

Emoção Quantidade de imagens

Raiva 958

Nojo 111

Medo 1024

Felicidade 1774

Neutralidade 1233

Tristeza 1247

Surpresa 831
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Figura 15 - Exemplos de emoções da base de dados.

3.2 Linguagem e Ambiente de execução utilizados

As primeiras redes foram treinadas utilizando Python 3.7.1 no  Google Collaboratory,

que é um ambiente de execução em nuvem fornecido pelo Google Research. Nele, é possível

executar códigos em Python tendo acesso a uma máquina com 12GB de memória RAM e

100GB de disco que executa código por até 12h ininterruptas, de forma gratuita.

Após  determinados  parâmetros  com  melhor  performance  dentre  as  redes  treinadas,

foram  treinadas  66  redes  em  um  notebook  dell  vostro  5470  com  8GB  de  RAM,  com

hiperparâmetros próximos a estes pré-determinados para fins de comparação e validação de

uma rede ótima entre elas.

3.3 Código utilizado

O código utilizado foi adaptado do código de Dobrzanski (2016),  que é uma versão

atualizada para Python 3 do já  disponível  no livro e  GitHub de Nielsen (2015) feito  em

Python 2.7.

Foram utilizadas também bibliotecas como, numpy, matplotlib e pandas para auxiliar no

tratamento e análise dos dados.

Fonte: (KAGGLE, 2020).
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3.4 Tratamento dos dados

3.4.1 Encoding dos dados

Como cada imagem do dataset possui dimensões de 48x48 pixels, seus valores foram

todos normalizados, dividindo-os por 255 (máximo de intensidade possível de um pixel). Em

seguida elas foram transformadas em vetores de uma coluna e 48x48 = 2304 posições, sendo

eles as entradas na camada de input da rede.

Foi realizado um categorical encoding na classificação das emoções, a cada uma das 5

emoções foi atribuído um número de 0 a 4 , sendo representados pela tabela 3. 

Tabela 3 - Emoções e seus respectivos valores de encoding.

Emoção Valor do Enconding Vetor de One Hot Encoding

Raiva 0 [1, 0, 0, 0, 0]

Medo 1 [0, 1, 0, 0, 0]

Felicidade 2 [0, 0, 1, 0, 0]

Neutralidade 3 [0, 0, 0, 1, 0]

Tristeza 4 [0, 0, 0, 0, 1]

Então, para cada emoção é atribuído um vetor de 5 posições cujo valor do encoding

representa a posição que possui valor 1. Dessa maneira será possível comparar diretamente a

camada de saída que é definida com 5 neurônios.

3.4.2 Balanceamento dos dados

Quanto maior a quantidade de dados para treinar uma rede, melhor. O conjunto de 

dados utilizado possui aproximadamente um mínimo de 4 mil imagens por emoção, exceto as

emoções de nojo e surpresa que possuem 436 e 3171 imagens, respectivamente.

Por conta do desbalanceamento dos dados em relação às emoções de nojo e surpresa, 

para evitar um viés nos dados de treinamento da rede, elas não foram utilizadas. Restando 

apenas 5 emoções para a análise.
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3.5 Treinamento das redes

3.5.1 Parâmetros iniciais

Nas primeiras redes treinadas alguns parâmetros utilizados foram escolhidos com base

em heurísticas gerais, como learning rate inicial de 0.01, e outros com base em parâmetros

ótimos para o problema de reconhecimento de números escritos à mão, MNIST abordado por

Nielsen (2015), como mini batch size de valor 10 e 30 neurônios por camada.

3.5.2 Teste dos parâmetros

Após observar a acurácia de diversos parâmetros foram utilizadas redes com apenas

duas hidden layers, uma vez que o problema de vanishing gradient torna muito mais lento o

processo de treinamento de uma rede com múltiplas hidden layers se a função de ativação

possui sua imagem contida entre 0 e 1.

Definido o número de hidden layers, foram testados números de neurônios próximos

a 5000 como apresentados por Nordén (2019), e empiricamente learning rates próximas a 0.1

e  número  de  epochs  superiores  a  100,  demonstraram  uma  melhor  performance  e

evidenciaram pontos que serão discutidos nos resultados.

A partir disso determinou-se intervalos de valores de epochs, learning rate e número

de neurônios por camada para cada uma das redes a serem comparadas como pode ser visto

na tabela 4.

Tabela 4 - Hiperparâmetros testados.

Hiperparâmetro Intervalo de Valores

neurônios por camada 50; 100; 150

learning rate 0.1; 0.2; 0.3; 0.4; 0.5

epochs 100; 200; 300

mini batch size 32

3.5.3 Refinamento dos parâmetros

Comparando os resultados das 45 redes treinadas com os parâmetros de teste, houve

motivação para treinar mais 36 redes com parâmetros refinados. Tal motivação será discutida

nos resultados, eles podem ser observados na tabela 5.
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Tabela 5 - Hiperparâmetros refinados

Hiperparâmetro Intervalo de Valores

neurônios por camada 100; 150

learning rate 0.05; 0.1; 0.15

epochs 100; 200

mini batch size 16; 32; 64

3.5.4 Avaliação de performance

A  partir  dos  dados  obtidos  para  cada  uma  dessas  redes,  foram  escolhidas  as  3

melhores  em  questão  de  performance,  adotando  como  medida  a  melhor  acurácia  média

exibida no conjunto de imagens de teste e com o menor desvio padrão, a partir da epoch 50.

O número de epochs a partir do qual foi medida a performance foi determinado pelo

método  de  early  stopping utilizado  para  evitar  o  problema de  overfitting observando  os

gráficos de acurácia da rede sobre o conjunto de teste.
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4 RESULTADOS

Nesta seção serão discutidos os resultados obtidos ao longo do treinamento das redes

com diversos hiperparâmetros, assim como destacados os pontos que levaram à escolha dos

mesmos e das redes com melhores performances.

4.1 Redes iniciais

Os hiperparâmetros utilizados no treinamento da primeira rede foram os apresentados

pela tabela 6.

Tabela 6 - Hiperparâmetros primeira rede de treino.

Nodes / hidden layer 30

Mini batch size 10

Epochs 30

Learning Rate 3

Esta foi a única rede treinada com apenas uma  hidden layer, a acurácia média obtida

sobre o conjunto de teste desta rede foi de 22.2%, que se aproxima da acurácia esperada de

20% ao se escolher uma emoção aleatoriamente entre as 5 classificadas.

Isso está relacionado ao fato de que os hiperparâmetros escolhidos foram os mesmos

que  Nielsen  (2015)  utiliza  em  seu  livro  para  obter  uma  acurácia  superior  a  95%  no

reconhecimento  de  dígitos  escritos  a  mãos,  um problema  completamente  diferente.  Seus

resultados de nada serviriam para identificar emoções em imagens.

4.2 Busca por parâmetros

As 66 redes treinadas foram divididas em duas levas de parâmetros, onde na primeira

delas  foram  treinadas  30  redes  e  na  segunda  36.  As  motivações  e  resultados  são

demonstrados a seguir.

4.2.1 Primeira leva de treinamento

Foram treinadas mais de 20 redes no google colaboratory a fim de delimitar um range

de parâmetros promissores a serem utilizados na primeira leva da procura de uma rede com

melhor acurácia.

Partindo dos trabalhos de Bendio (2012) e Keskar et al (2017), como mencionado na

seção 2.7.3, o  mini batch size  escolhido para iniciar a busca foi de 32 amostras por  mini
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batch. O número total de neurônios de cada uma das redes foi definido na mesma ordem de

grandeza dos 5000 tidos como melhor quantidade no paper apresentado por Nordén (2019)

comentado na seção 3.5.2.  A partir  do treinamento  das redes  no  google colaboratory foi

observado um melhor desempenho utilizando learning rates em torno de 0.1.

O período de uso limitado do google laboratory impossibilita uma melhor avaliação

do  número  de  epochs,  pois  quanto  maior  este  número  maior  o  tempo  de  treinamento

necessário.  Houve então a tentativa de treinar redes com todos os parâmetros listados  na

tabela  4  em um  dell  vostro  5470.  Porém,  após  aproximadamente  158h  de  execução  no

treinamento  das  redes,  notou-se  uma  pior  performance  naquelas  com  learning  rates

superiores a 0.2 e o código foi interrompido obtendo os resultados de treino de apenas 30

redes  como  primeira  leva  de  treinamento.  Excluindo,  dessa  forma,  as  redes  com  150

neurônios por camada, como pode ser visto na tabela 7.

Tabela 7 - Hiperparâmetros das 30 redes treinadas na primeira leva.

Hiperparâmetro Intervalo de Valores

neurônios por camada 50; 100

learning rate 0.1; 0.2; 0.3; 0.4; 0.5

epochs 100; 200; 300

mini batch size 32

Dentre as 30 redes treinadas foram escolhidas as 3 com maior acurácia média, que

resultantes dos hiperparâmetros apresentados na tabela 8.

Tabela 8 - Hiperparâmetros 3 redes com maior acurácia média da primeira leva.

Hiperparâmetro 1ª Rede 2ª Rede 3ª Rede

neurônios por camada 100 100 100

learning rate 0.1 0.2 0.2

epochs 300 300 200

mini batch size 32 32 32

Foi observado também uma tendência de estabilização da acurácia no conjunto de

testes a partir da epoch 50, como pode ser visto nos gráficos das figuras 16, 17 e 18.
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Figura 16 - Gráfico test accuracy vs epochs 1ª Rede, primeira leva.

Figura 17 - Gráfico test accuracy vs epochs 2ª Rede, primeira leva.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.
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Figura 18 - Gráfico test accuracy vs epochs 3ª Rede, primeira leva.

Suas acurácias médias e respectivos desvios padrão são apresentados na tabela 9.

Tabela 9 - Média e desvio padrão das 3 redes com maior acurácia média da primeira leva.

Rede Acurácia Máxima Acurácia Média Desvio Padrão

1ª 2904 2688.313 138.604

2ª 2776 2585.52 135.221

3ª 2538 2529.514 140.107

Das 5834 imagens do conjunto de teste, a 1ª rede obteve acurácia média e acurácia

máxima na classificação das emoções de aproximadamente 46% e 49.7%, respectivamente,

que é muito superior em comparação aos 22% da  primeira rede.

Dois  fatores  interessantes  também  podem  ser  observados  nos  gráficos  acima,  a

influência do  learning rate no tempo de convergência e também na dispersão dos dados.

Ambos serão comentados posteriormente.

Fonte: Elaborado pelo autor.
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4.2.1 Segunda leva de treinamento

Baseado nos resultados obtidos pelo treino das primeiras 30 redes, foram treinadas mais

36 redes com parâmetros próximos aos das redes que apresentaram melhores performances

na primeira leva de treinamento, exatamente como descrito na tabela 5 da seção 3.5.3.

Após, aproximadamente, 151h de execução foram obtidas as 3 melhores redes dentre a

última leva de treinamento, essas redes possuem os hiperparâmetros listados na tabela 10.

Tabela 10 - Hiperparâmetros das 3 redes com maior acurácia média na segunda leva.

Hiperparâmetro 1ª Rede 2ª Rede 3ª Rede

neurônios por camada 100 150 150

learning rate 0.05 0.05 0.05

epochs 100 200 100

mini batch size 16 16 16

Os  resultados  obtidos  por  elas  são  consideravelmente  melhores  e  podem  ser

observados na tabela 11.

Tabela 11 - Média e desvio padrão das 3 redes com maior acurácia média da segunda leva.

Rede Acurácia Máxima Acurácia Média Desvio Padrão

1ª 2894 2752.306 72.889

2ª 2931 2750.422 99.623

3ª 2863 2728.187 90.680

A estabilização da acurácia parece se iniciar em torno do mesmo número de epochs da

primeira leva, 50. E pode ser observado nas figuras 19, 20 e 21.
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Figura 19 - Gráfico test accuracy vs epochs 1ª Rede, segunda leva.

Figura 20 - Gráfico test accuracy vs epochs 2ª Rede, segunda leva.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.
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Figura 21 - Gráfico test accuracy vs epochs 3ª Rede, segunda leva.

É notável a diminuição das oscilações apresentadas pelos gráficos da segunda leva

comparados a primeira, essa diminuição de barulho é associada ao  mini batch size. Outro

ponto a considerar é o aumento na acurácia média e a diminuição do desvio padrão, um fato

interessante é que o  learning rate de todas as redes com melhor performance é o mesmo,

ambos os pontos serão discutidos posteriormente.

4.3 Análise dos hiperparâmetros com melhor performance

Dentre os resultados exibidos pelas 66 redes treinadas, as evidências de alguns fatores

teóricos  sobre  as  redes  neurais  relacionadas  aos  hiperparâmetros  se  destacam  e  serão

analisadas a seguir.

4.3.1 Learning rate

Durante a procura por um valor ótimo de learning rate, dois pontos principais foram 

observados:

● A velocidade de convergência 

● Acurácia para qual convergem os valores.

Sobre a velocidade de convergência, comparando os gráficos das figuras 17 e 18, a 

acurácia da rede com learning rate = 0.1 parece começar sua estabilização na faixa das 50 

epochs enquanto a rede com learning rate = 0.2 apresenta sinal de estabilidade na faixa de 25

Fonte: Elaborado pelo autor.



47

epochs o que é esperado já que este é um termo na equação do gradient descent que 

influencia diretamente no quanto o valor do custo se aproxima do mínimo local em cada 

iteração.

Apesar da velocidade de convergência ser diretamente proporcional ao learning rate, a 

acurácia obtida não possui a mesma relação, uma vez que valores maiores deste 

hiperparâmetro impossibilitam a função de custo atingir o ponto mínimo de um vale local. 

Estes dois pontos estão representados nas figuras 22 e 23, que mostram os valores da função 

de custo da 1ª e 2ª rede da primeira leva, respectivamente.

Figura 22 - Gráfico training cost vs epochs 1ª Rede,
primeira leva.

Figura 23 - Gráfico training cost vs epochs 2ª Rede,
primeira leva

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.
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Enquanto o gráfico da 2ª rede (figura 23) mostra sinais de um início de estabilização em 

300 epochs, o gráfico da 1ª rede (figura 22) parece continuar convergindo cada vez mais para 

zero. Apesar da velocidade de convergência da rede com maior learning rate ser maior o 

valor obtido da função de custo não chega a ficar abaixo de 1.0, em comparação, o learning 

rate menor apresenta valores próximos a 0.5 em 300 epochs sem sinal de alterar essa 

tendência de diminuição.

Para as redes da segunda leva, nota-se algo interessante. Todos os learning rates das 3 

redes com melhor performance são iguais e possuem valor de 0.05, o menor dos valores de 

learning rate utilizados nos treinamentos. Isso também vai de encontro com a proposta 

teórica de que quanto menor o seu valor, mais o gradient descent conseguirá aproximar o 

valor do custo ao seu mínimo local. O gráfico da função de custo da 2ª rede da segunda leva 

(a única dentre as 3 com 200 epochs), apresentado na figura 24, permite uma melhor 

visualização.

Figura 24 - Gráfico training cost vs epochs 2ª Rede, segunda leva.

Na figura acima não há sinais de alteração na taxa de variação da curva em direção ao 

mínimo da função de custo, em 200 epochs, o que implica em uma convergência mais lenta. 

Em contrapartida, os números obtidos na minimização da função de custo são muito mais 

animadores. É notável também a diminuição das oscilações nos gráficos das redes da segunda

leva, isso se deve ao mini batch size e será abordado a seguir.

Fonte: Elaborado pelo autor.
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4.3.2 Mini batch size

Segundo Keskar et al (2017), um tamanho maior no número de amostras utilizadas em

cada mini batch causa uma degradação significativa na qualidade do modelo em relação a sua

habilidade de generalização.

Nos resultados da segunda leva, não foi apenas o menor learning rate que demonstrou

a melhor performance, mas também o menor mini batch size foi o hiperparâmetro utilizado 

pelas 3 redes com melhor performance. E, ao contrário da primeira leva, foram utilizados 3 

valores (16, 32 e 64) a fim de comparar os seus efeitos sobre as redes. As figuras 25, 26 e 27 

mostram os gráficos da rede classificada como a melhor dentre as da segunda leva e seus 3 

mini batch sizes utilizados.

Figura 25 - Gráfico test accuracy vs epochs 1ª Rede, segunda leva, mini
batch size 16.

Fonte: Elaborado pelo autor.
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Figura 26 - Gráfico test accuracy vs epochs 1ª Rede, segunda leva, mini
batch size 32.

Figura 27 - Gráfico test accuracy vs epochs 1ª Rede, segunda leva, mini
batch size 64.

Fica evidente, pelos gráficos acima, que há uma piora considerável na acurácia da rede

sobre o conjunto de testes quanto maior o mini batch size utilizado. Além de oscilações cada

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.
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vez maiores, as acurácias obtidas foram cada vez menores onde as máximas praticamente não

chegaram a alcançar 2800 emoções classificadas corretamente.

4.3.3 Epochs e overfitting

Quanto maior o número de epochs mais a função de custo se aproximará do seu 

mínimo local, o que não implica necessariamente em uma melhor performance quando 

aplicada em dados desconhecidos. O fenômeno  overfitting é um problema tentador que pode 

levar a crença de que quanto mais epochs melhor a rede performará, se for analisada apenas a

acurácia nos dados de treino.

Ao observar a acurácia neste conjunto, os resultados são incrivelmente animadores, as

figuras 28 e 29 mostram os resultados obtidos para a 1ª e 2ª redes da segunda leva de treino, 

respectivamente.

Figura 28 - Gráfico training accuracy vs epochs 1ª Rede, segunda leva.

Fonte: Elaborado pelo autor.
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Figura 29 - Gráfico training accuracy vs epochs 2ª Rede, segunda leva.

O número de emoções classificadas corretamente no conjunto de treino não mostra 

tendência alguma em parar de aumentar e, de fato, quanto maior o número de epochs maior 

será o número de imagens classificadas corretamente. Porém, como discutido antes, a 

acurácia no conjunto de testes apresenta uma estabilização iniciada no máximo por volta das 

50 epochs. 

Como dito na seção 2.8.2, todo o treino realizado a partir do ponto que a acurácia de 

teste se estabiliza, na realidade, é prejudicial para a performance da rede. O que ela está 

fazendo aumentando o número de classificações corretas do conjunto de treino é apenas uma 

“memorização” do mesmo. Dessa forma, o indicado é parar o treinamento quanto antes for 

detectada a estabilização da acurácia no conjunto de testes.

Fonte: Elaborado pelo autor.
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5 CONCLUSÃO

Considerando todos os fatores apresentados anteriormente, a melhor rede obtida entre

as 66 treinadas foi a rede com 100 neurônios por  hidden layer, 0.05 de learning rate,  mini

batch size de 16 e 100 epochs de treinamento, coincidentemente classificada como 1ª rede da

segunda leva.

Os fatores que levaram a essa conclusão são os que beneficiam uma melhor acurácia em

um aspecto generalizado, que é o principal objetivo da área de machine learning. Entre estes

fatores os mais decisivos foram a acurácia média no conjunto de testes de 47.17% (maior

entre todas as testadas) e um baixo número de epochs frente às outras redes, o que leva a uma

menor chance de overfitting.

Apesar  de  não  serem  satisfatórios  o  suficiente  para  uma  aplicação  prática  no

reconhecimento de emoções, os resultados obtidos neste trabalho podem ser comparados aos

resultados obtidos por Nordén (2019) de 61.1% na acurácia  máxima com o uso de redes

neurais não convolucionais. Aleḿ disso estes resultados evidenciam pontos interessantes com

relação a influência do conjunto de dados e hiperparâmetros utilizados ao se trabalhar com

redes neurais, também mostra uma clara evolução na capacidade do aprendizado das mesmas

quando  considerados  os  hiperparâmetros  compatíveis  com  a  arquitetura  utilizada.  Redes

neurais convolucionais apresentam resultados muito superiores,  como os apresentados por

Khaireddin (2021) de 73.28% de acurácia sobre o conjunto de dados de teste da base FER-

2013.

A importância  de aplicações  como a  abordada neste  trabalho  é  evidenciada  pelos

sistemas de reconhecimento de emoções em desenvolvimento na atualidade, com finalidades

diversas. Alguns estão sendo implementados em carros autônomos para garantir a segurança

dos motoristas (Jain, 2021), outros estão sendo aplicados de maneiras coercivas em cidadãos

chineses (Wakefield, 2021 e Standaert, 2021).

Tais implementações levam a discussões cada vez mais complexas sobre o uso correto

da inteligência artificial e apenas reforçam a importância da interação crescente entre pessoas

e  máquinas.  Sendo  o  reconhecimento  de  emoções  apenas  um  dos  usos  da  inteligência

artificial  como ferramenta para,  esperançosamente,  possibilitar  um futuro benéfico para a

humanidade.
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