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RESUMO

FRUTUQOSO, L. J. Reconhecimento de emocoes através de Redes Neurais. 2021. 64 f.
Monografia (Trabalho de Conclusiao de Curso) - Escola de Engenharia de Sdo Carlos,

Universidade de Sdao Paulo, Sdo Carlos, 2021.

O uso da inteligéncia artificial é amplamente difundido nas mais diversas aplicacdes
tecnologicas atuais. Numa sociedade onde a interagdo entre os seres humanos e as maquinas
ocorre de maneira cada vez mais profunda, o entendimento de caracteristicas humanas se
torna fundamental para as mdaquinas. A fim de tornar mais eficaz esta interacdo, o
reconhecimento de emocdes pode ser visto como um dos pilares que constitui as informacgoes
necessarias para avaliar o estado mental de uma pessoa. O presente trabalho tem por objetivo
treinar uma rede neural capaz de identificar emoc¢des humanas, utilizando como base de
dados o conjunto de imagens FER-2013. Na revisao bibliografica sdo abordados conceitos
histéricos sobre o surgimento das redes neurais, sua estrutura, seu funcionamento e
problemas comuns. Para a obtengdo dos dados utilizados neste trabalho foram treinadas 66
redes, com hiperparametros que se demonstraram promissores, por evidéncia empirica ou por
resultados de outros autores. Os conceitos apresentados foram entdo utilizados no
embasamento dos resultados e na escolha da melhor rede dentre todas as treinadas, que
apresentou 47.17% de acuracia média no conjunto de testes. Apesar de ndo ser uma acuracia
satisfatéria para aplicacdes praticas, ela foi obtida através de ajustes dos hiperparametros

demonstrando, claramente, a influéncia deles sobre a performance das redes neurais.

Palavras chave: Inteligéncia Artificial, Redes Neurais, Reconhecimento de emocgoes.



ABSTRACT

FRUTUOSO, L. J. Emotion recognition through the use of Neural Networks. 2021. 64 f.
Monografia (Trabalho de Conclusiao de Curso) - Escola de Engenharia de Sdo Carlos,

Universidade de Sdao Paulo, Sdo Carlos, 2021.

The use of artificial intelligence is widespread in the most diverse technological
applications nowadays. In a society where the interaction between human beings and
machines occurs in increasingly deep ways, the comprehension of human characteristics
becomes key for the machines. In order to make this interaction more efficient, emotion
recognition can be seen as one of the cornerstones that compose the necessary information for
evaluating the mental state of a person. This work has the objective of training a neural
network capable of identifying human emotions, using as the basis the dataset of images
FER-2013. In the literature review, concepts of the history about the arise of the neural
networks, their structure, how they work and commun problems revolving the subject are
approached. To obtain the data used in this work 66 nets were trained with hyperparameters
that appeared to be promising, by empirical evidence or by results of other authors. Then, the
concepts presented were used in the foundation about the explanation of the results and in the
process of choosing the best net among all the trained ones, which showed an average
accuracy of 47.17% in the test dataset. Even though it’s not a satisfactory accuracy for
practical application, it was obtained through the tunning of the hyperparameters showing,

clearly, their influence on the performance of the neural nets.

Keywords: Artificial Intelligence, Neural Networks, Emotion Recognition.
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1 INTRODUCAO

1.1 Apresentacdo do tema

A visdo é uma ferramenta evolutiva adquirida, ao longo de milhdes de anos, pela
maioria das espécies de animais que habitam o planeta. Dentre os sistemas sensoriais, a visao
é, sem duvida, um dos sentidos mais importantes para que o animal possa sobreviver no meio
em que habita. Isso ocorre porque suas chances de sobrevivéncia estdao diretamente atreladas
a quantidade de informacdes que ele consegue absorver e interpretar sobre o ambiente
(JONES, 2014).

Apesar da sobrevivéncia humana frente as ameacas naturais do ambiente ser um desafio
passado, a informacdo obtida pelos sistemas sensoriais ainda possui extrema relevancia e nao
apenas para nos. As maquinas necessitam extrair e interpretar informacoes sobre o ambiente
de maneiras cada vez mais sofisticadas para realizarem tarefas cada vez mais complexas. Para
tal, o campo de estudo da visdo computacional é essencial.

Visdo computacional pode ser definida como um campo cientifico que extrai
informagOes de imagens digitais (MOINDROT, 2018). Os recentes estudos nesse campo
possibilitaram a construcdo de diversas aplicagdes como, por exemplo, sistemas de
reconhecimento facial, analise médica de imagens, carros autbnomos etc.

Essas aplicacdes sé se tornaram factiveis através do uso da Inteligéncia Artificial.
Que, de acordo com o proprio criador do termo, é definida como: “A ciéncia e engenharia de
produzir maquinas inteligentes, especialmente, programas inteligentes. Ela esta relacionada
com a tarefa similar de usar computadores para entender a inteligéncia humana, porém a
Inteligéncia Artificial ndo precisa se confinar a métodos que sdo biologicamente
observaveis.” (MCCARTHY, 2004).

Os campos da Inteligéncia Artificial e Visdo Computacional existem desde os anos
1950 e 1960, respectivamente (MOINDROT, 2018 e ANYOHA, 2017). A Inteligéncia
Artificial avancou de forma significativa entre 1957 e 1974, juntamente com 0S avancos
tecnologicos na capacidade de processamento e de memoria dos computadores. Apos esse
periodo, os avangos ndo atingiram as expectativas até 1997, quando a inteligéncia artificial
Deep Blue da IBM derrotou o campedo mundial de xadrez Gary Kasparov (ANYOHA,
2017).



A técnica mais popular da atualidade utilizada no reconhecimento de imagens, deep
learning, surgiu na década de 1980, quando o termo foi introduzido por Rina Dechter
(DECHTER, 1986). Porém, uma barreira limitou o avanco desse campo de estudo, a falta de
imagens disponiveis e devidamente classificadas para se trabalhar com as redes neurais.

Foi apenas entre 2009 e 2010 que ocorreu o marco divisor de aguas no campo da
visdo computacional. Com o avango e popularizacao de aparelhos como smartphones e
cameras digitais, o projeto ImageNet (FEI-FEI et al, 2009) atacou o problema da falta de
dados para o campo de estudo. Classificando e disponibilizando, em 2010, mais de 10
milhdes de imagens contendo mais de 10 mil classes diferentes de objetos.

O projeto consiste ndao apenas na classificacdao destes dados, mas também em um
desafio onde os participantes criam algoritmos com o objetivo de classificar automaticamente
as imagens. Um fato relevante ocorreu em 2012 com o artigo publicado por Alex Krizhevsky
que abordou o desafio ImageNet utilizando redes neurais convolucionais (KRIZHEVSKY et
al, 2012), que se mostrou uma abordagem muito mais promissora comparada as anteriores e
se tornou a mais utilizada até o presente momento. Nota-se um grande avanco na drea em um
curto espaco de tempo. Em 2010 a taxa de erro na classificagdo das imagens do algoritmo
vencedor do desafio era de 28% e em 2017 o erro foi menor que 3%, conforme mostra a
Figura 1.

Figura 1 - Taxas de erro dos vencedores do desafio ImageNet entre 2010 e

2017.
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Desde entdo houve uma popularizacdo na utilizagdo de técnicas de inteligéncia artificial,
ndo s6 no meio académico, como também no meio industrial, financeiro, tecnoldégico e até
mesmo no ambito pessoal com bibliotecas de uso livre, como Tensorflow e Keras produzidas
pelo Google LCC.

As pessoas estdo se tornando cada vez mais dependentes destas aplicacOes, gerando
questdes sobre como sera um futuro ndo tdo distante. Segundo Zuffo (2020), a relacdo do ser
humano com as maquinas pode se tornar até mesmo simbidtica, que de certa forma ja é
realidade em algumas aplicacGes médicas como o marcapasso, por exemplo.

Num horizonte proximo, possivelmente, sera dado um passo além. Tecnologias
poderdo viabilizar a comunicagdo direta com as maquinas através da atividade cerebral, como
demonstrado na apresentagdo da Neuralink onde um macaco jogou o videogame Pong
utilizando um chip implantado diretamente no seu cérebro (WAKEFIELD, 2021).

Tendo uma proximidade tdo grande com as maquinas, € importante ter em mente a
quantidade de informacdo que elas conseguirdo obter sobre os seres humanos, incluindo suas

emocoes.

1.2 Objetivos

O objetivo deste trabalho é implementar um algoritmo de rede neural com aprendizado
profundo, para o reconhecimento de emo¢oes humanas através de expressoes faciais obtidas
por imagens classificadas em 5 emocdes basicas: Neutralidade, tristeza, felicidade, medo e
raiva.

Esse objetivo sera abordado através das seguintes etapas:

1 Implementacdo e treinamento de uma rede neural utilizando a base de dados
de imagens FER-2013 (KAGGLE, 2020).

2 Teste de acurdacia através de experimentacdo com diferentes hiperparametros.



2 REVISAO BIBLIOGRAFICA

2.1 Emocgoes

Segundo Izard (2010), a comunidade cientifica ainda ndo possui um consenso para a
definicdo de emocdo. Porém, uma descricao consiste em: “circuitos neurais dos sistemas de
resposta e um estado de sensagoes que motivam e organizam cognicao e acdo”.

De fato, refletir sobre a possivel definicdo de emocdo é uma tarefa com complexidade
intrinseca. Pensando apenas que as pessoas sdo muitas vezes incertas sobre suas proprias
emocoes, poderiam elas classificar com clareza as emocdes dos outros? E, mesmo assim,
muitas vezes elas reconhecem facilmente quando outras pessoas estdo tristes, felizes,
assustadas etc. Como seria possivel entdo tentar ensinar uma maquina a reconhecer emogoes
humanas?

Ekman et al. (1971), definiu seis emocgoes basicas: felicidade, surpresa, nojo, medo,
raiva e tristeza. E prop6s um método para reconhecé-las através das expressdes faciais, o
Facial Affect Scoring Technique (FAST), onde ele propds que as expressoes faciais
correspondentes as emogoes teriam componentes ou “itens” em comum.

A emocdo de surpresa, por exemplo, teria componentes de expressdes faciais como
sobrancelhas levantadas, olhos abertos, boca aberta etc. Em uma abordagem similar, a rede
neural sera treinada com o intuito de reconhecer as emocoes baseando-se nas expressoes

faciais das imagens presentes na base de dados FER-2013 (KAGGLE, 2020).



2.2 Imagens

Para os computadores, imagens sao matrizes constituidas por Pixels que possuem
valores de 0 a 255, representando sua intensidade. Uma imagem colorida do tipo RGB, por
exemplo, é um versor de rank 3. Pois, a imagem é representada por uma matriz onde seus
elementos possuem um valor de 0 a 255 para cada um de seus canais de cores basicas,
vermelho, verde e azul (EARNSHAW, 2017).

Imagens em escala de cinza possuem apenas um canal. Na andlise de imagens cujas
cores ndo sdo um fator relevante, o uso da escala de cinza possui uma vantagem com relacao

ao custo computacional, ja que ndo é necessario processar valores de intensidade de 3 canais.

2.3 Inteligéncia Artificial, Machine Learning, Neural Networks e Deep Learning

“Na sua forma mais simples, IA (Inteligéncia Artificial) € um campo que combina
ciencia da computacdo e robustos conjuntos de dados, possibilitando a solucdao de
problemas.” (IBM Cloud Education, 2020). Partindo dessa definicdo e da definicdo de
McCarthy (2004), o campo da IA engloba o campo de Machine Learning, sendo este o estudo
que fornece as maquinas a capacidade de aprender sem serem explicitamente programadas
para isso (SAMUEL, 1959).

Dentro do campo de ML (Machine Learning), existem diversas técnicas, como Naive
Bayes, K-Means, Support Vector Machines, Neural Networks, entre outras. As Redes
Neurais, ou Neural Networks, sao portanto um subcampo de estudo de ML. E, por sua vez,
aprendizado profundo, ou deep learning, é um subcampo de estudo de Redes Neurais. Essas

relacdes sdo representadas no diagrama da Figura 2.
Figura 2 - Diagrama dos campos de estudo abordados.
Artificial Intelligence

Machine Learning

Meural Metworks |

Deep Learning

Fonte: Autoria propria.
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O paradigma comum a todas as técnicas de Machine Learning que tornam esses
campos de estudo tdo interessantes € a inversao no fluxo dos algoritmos. Os algoritmos
comuns recebem um determinado input e sdao programados de maneira especifica para
produzirem um output, ja os algoritmos de Machine Learning tem especificados tanto seus
inputs quanto seus outputs e sdo programados de forma que possam automaticamente
produzir uma maneira de fornecer esses outputs. Com a esperanca de que, futuramente, essa

maneira responda bem em um contexto generalizado.

2.4 Tipos de aprendizado

Segundo Delua (2021), existem duas abordagens basicas utilizadas no campo de
Machine Learning, o aprendizado supervisionado e o ndo supervisionado. O aprendizado
supervisionado é feito através de inputs e outputs ja conhecidos, o ndo supervisionado se da
pelo uso apenas de inputs e nao fornece outputs conhecidos.

Para problemas de classificacdo e regressdao sao mais comuns os usos de aprendizagem
supervisionada, trabalhos com anélise de sentimentos sdo geralmente abordados como
problemas de classificacdo. Problemas de agrupamento ou clustering utilizam aprendizado
ndo supervisionado, onde o principal objetivo é observar relacoes e padrdes entre dados

disponiveis, como trabalhos de detec¢do de anomalias.

2.5 Estrutura das Redes Neurais

A unidade basica de uma Rede Neural conhecida como n6, neurdnio, ou perceptron
surgiu a partir de uma estrutura desenvolvida por Frank Rosenblatt em 1957 (NIELSEN,
2015). Seu objetivo, na época, era explicar como a memodria era armazenada em sistemas
biolégicos, sendo o perceptron a unidade basica do seu “brain model”, que consistia em
unidades conectadas formando uma rede. Onde cada uma delas, ao receber um sinal de
entrada, responde gerando um sinal de saida que pode ser transmitido, através de conexdes,

para um grupo seleto de unidades receptoras (ROSENBLATT, 1961).
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Figura 3 - Estrutura de um perceptron com 3
entradas.

» output

Fonte: Nielsen (2015)

O perceptron possui uma estrutura como a representada na Figura 3, este em
especifico recebe 3 entradas. A saida gerada possui valores binarios, 1 ou 0, a maneira que
Rosenblatt utilizou para computar essa saida foi através de pesos ou weights, nimeros reais
que atribuem a importancia das conexodes. Generalizando para mais do que 3 entradas, o valor
de entrada no neur6nio é dado pela soma do produto das saidas dos perceptrons da camada
anterior e seus respectivos pesos, se o valor obtido ultrapassar um limite estabelecido a saida
do perceptron € 1, sinalizando que ocorreu uma ativagdo, caso contrario, sua saida possui o
valor 0, indicando uma inativacao.

Sendo X; e W; as saidas dos perceptrons da camada anterior e 0s pesos das conexoes,

respectivamente. Temos que a saida de um perceptron ¢é dada por:

0 if 2] w;x; < threshold
if Z,. w;x; > threshold 1)

output =

A diferenca crucial entre o perceptron, ou neurdnio, das redes utilizadas atualmente esta
no modo que é computada sua saida. Diferente dos perceptrons de Rosenblatt, que nao
possuem niveis intermediarios de ativacdo, os neuronios atuais possuem um valor de saida
sendo um numero real entre 0 e 1. Essa caracteristica proporciona uma propriedade
fundamental de que pequenas alteragdes nos pesos causam pequenas alteracoes nas saidas dos
neuronios. E, como sera visto mais adiante, essa é a propriedade que torna possivel o
aprendizado das redes.

Estruturalmente, as redes neurais consistem de camadas de neuronios, que nada mais sao

do que nimeros reais representando suas “ativagoes”, interligados por pesos, que também sdao
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nimeros reais, cuja funcgdo é atribuir relevancia entre as conexdes. Uma Rede Neural possui
no minimo 3 destas camadas, uma camada de entrada, uma camada intermediaria
“escondida” chamada de hidden layer e uma camada de saida. As Redes Neurais Profundas
ou Deep Neural Networks sao redes com mais de uma hidden layer. Essa estrutura pode ser

observada na Figura 4.

Figura 4 - Estrutura de uma rede neural completamente conectada.

) hidden layer 1  hidden layer 2 hidden layer 3
input layer

Fonte: Nielsen (2015)

As Redes Neurais também podem ser completamente conectadas, onde a saida de cada
neuronio é uma das entradas de cada um dos neur6nios da camada seguinte, ou podem ser
parcialmente conectadas, onde a afirmacdo anterior ndo é satisfeita. Neste trabalho serdo

abordadas apenas as redes completamente conectadas ou fully connected networks.

2.6 Funcionamento das Redes Neurais

2.6.1 Passagem de informacao: forward propagation ou feedforward

A propagacdao de informacdo nas redes tratadas neste trabalho se dd de maneira
sequencial de uma camada para a outra e é chamada de forward propagation ou feedforward,
essa ideia se mantém semelhante a técnica utilizada por Rosenblatt (1961) e se da por duas
etapas.

e Entrada de informacdo no neuronio pela soma das saidas dos neurénios anteriores

multiplicadas pelos seus respectivos pesos, somado também um bias.
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e Aplicacdao de uma funcgdo de ativacao que resulta na saida do neur6nio e sera utilizada

para obter a entrada nos neuronios da camada subsequente.

Com excecdo da camada de entrada que recebe os dados a serem analisados, todos os

neuronios dependem das saidas dos neuronios anteriores, essa relagao se da pela equacao 2.

input=b+Zkak
p )

Pode ser visto que a equacdo 2 é praticamente analoga a equacdo de Rosenblatt (1961),
tendo como diferenca apenas o fator do bias, sendo este mais um parametro ajustavel para a
rede. O bias pode ser interpretado como um viés de ativacao, quando o valor do bias é
bastante positivo ha uma maior facilidade da ativacao do seu neurdnio, quando é negativo ha
uma maior dificuldade desta ativacao (NIELSEN, 2015).

Computada a entrada do neur6nio, sua saida sera dada aplicando uma funcdao de
ativacao. Diferentemente da saida proposta para o perceptron através de uma fungdo degrau,
as fungdes de ativacdo sdo um grupo de fungdes que fornecem uma saida com valores

continuos que possuem propriedades semelhantes a ela.

o(z)=—— 3)

A fungdo sigmoéide (Equacao 3) é uma das mais comuns, quanto maior seu valor de
entrada mais ela se aproxima do valor unitario, e quanto menor o valor de entrada, seu

resultado se aproxima a zero, como pode ser observado na Figura 5.
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Figura 5 - Sigmoid vs Step Function.

| = step functony
|| — sigmoid :

-10 5 10

-5 0
Fonte: Matthew (2020).

O aspecto fundamental da fungao sigmoide como ja comentado antes € a propriedade de
assumir valores continuos entre zero e um. Isso permitird o uso do algoritmo de backward
propagation ou backpropagation, que sera abordado posteriormente.

Um resumo esquematico do algoritmo de feedforward pode ser visto na Figura 6,
onde, apds todo o processo descrito, a saida do neur6nio sera utilizada na entrada dos

neurdnios da camada seguinte, por se tratar de uma rede completamente conectada.

Figura 6 - Configuracdo esquematica de feedforward para um neurénio.

Xl —' b

Y z y = 0(z)

ofz) ——»

Fonte: Calebe (2019)

2.6.2 Funcao de custo, perda ou objetiva

Em problemas de aprendizado supervisionado é possivel calcular a diferenca entre o

output fornecido pela rede e o seu valor esperado. Essa diferenca é calculada através de uma
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funcdo vista na literatura como Loss Function, Cost Function ou Objective Function
(NIELSEN, 2015).
Uma delas é o erro quadratico médio (EQM), a quadratic cost function é dada pela

equacao 4.

Clw,b)=5- 3 (y(x)-a)? @

Sendo w e b todos os pesos e biases da rede, respectivamente, n é o numero de
amostras de treino, x é o input de uma tinica amostra, y(x) é o output esperado em relacdo ao
input x e a é o output fornecido pela rede. Note que a notagdo utilizada difere da figura 6,
agora o output do neuronio é dado pela variavel a e y representa o output real que deveria ser
observado.

Outra funcdo de custo também muito utilizada é a cross-entropy cost, dada pela

equacao 5.

Clw,b)="= X[ yin(a)+(1-y)In(1-a) ®

Como y(x) é um valor ja conhecido para cada input, o tinico valor que pode ser
alterado é a saida a fornecida pela rede, que é funcao dos pesos e biases. Entao, o objetivo é
modificar estes dois parametros, chamados de parametros de aprendizado, de forma a
minimizar a funcdo de custo. Para isso, é utilizado o método da descida do gradiente ou

gradient descent.

2.6.3 Gradient descent.

“O que queremos dizer quando falamos que uma rede estd aprendendo é apenas que
ela esta minimizando uma funcao de custo.” (SANDERSON, 2017).

Gradient descent é um método iterativo utilizado para minimizar fungdes de multiplas
variaveis. Dado um ponto de inicio da funcdo, a cada iteracdo é calculado o seu gradiente
neste ponto, em seguida, o gradiente é multiplicado por um escalar negativo (chamado em
ML de learning rate) e entdao somado ao ponto inicial resultando dessa maneira em um novo
ponto, onde o processo sera repetido. A equacdo 6 demonstra de maneira mais geral o

método.
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vn+1:Vn_nvf(vn) (6)

Sendo f(v) uma fungio de muiltiplas varidveis, V=V;,V,,....
Dois pontos importantes a se notar neste método, sao:
e O gradiente dia a direcdo de maior variacdo na superficie f, um escalar
positivo resultaria em uma tendéncia de maximizar a funcao.
e Ndo ha garantia de convergéncia para o minimo global, apenas minimos
locais.

O segundo ponto é o mais importante, pois ele esta relacionado com o hiperparametro
learning rate na equacao, dado por n. Enquanto ndo ha o que possa ser feito com relacdo a
garantia de encontrar apenas minimos locais, a escolha do learning rate afeta
consideravelmente os resultados da rede. Uma vez que um 1 grande pode tirar a convergéncia
de um minimo local e leva-la a outro, torna-lo o menor possivel é importante para evitar que
isso aconteca. Mas, ao torna-lo pequeno, serao necessarias mais iteracoes para a convergencia
e, consequentemente, um maior custo computacional. Este e outros pontos de otimizacdo e
boas praticas serdo abordados posteriormente.

Entdo, aplicando gradient descent na funcdo de custo, seus componentes serdo dados

pelas equacodes 8 e 9.

0C 0C

VC=(——,—
Gwop) @)

_ 0C
Wn+1_wn_rl GW (8)

0C

b ..=b —nl=
m+1 m ab (9)

m
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Aplicar este método se mostrou uma tarefa extremamente desafiadora. Pois, é necessario
encontrar a derivada parcial da fungdo de custo em relacdao a cada um dos pesos e cada um
dos biases. Sendo que as redes neurais de hoje chegam a ter facilmente milhdes desses
parametros, acaba sendo inviavel a abordagem de um calculo analitico de cada uma dessas
derivadas individualmente e também muito custoso um processo numérico de aproximacao
delas.

O algoritmo que solucionou este problema e que, segundo Nielsen (2015), é
responsavel pelo avango das redes neurais visto nos dias de hoje, s6 ganhou relevancia apos a
publicacdio de um paper em 1986 (RUMELHART, 1986), tal algoritmo é chamado de

backpropagation.

2.6.4 Convengodes adotadas

Antes de abordar o topico backpropagation serdo definidas algumas convencoes

adotadas por Nielsen (2015).

e O peso que conecta dois neurdnios tera notagao wﬁ.k onde jé o numero do
neurdnio da camada I e k é o nimero do neurdnio da camada anterior (I—1).

e O bias de um neur6nio é denotado por b;, sendo | a camada em que ele se
encontra e j o seu nimero nesta camada.

e A saida de um neuronio sera denotada de forma similar ao bias, onde j
representa o nimero do neurdnio na camada [, sendo representada entdo por a§-

. A saida do neur6nio também pode ser denominada como sua ativacao.

Agora é possivel generalizar a ativacdo de um neur6nio pela equacao 10.

I _ Z I _1-1 )

(10)

Sendo ; a funcio de ativacdo, a expressio Y w',a, '+b’ pode ser denominada pela
k

variavel zj- chamada de weighted input, tornando a equacdo 10 mais compacta.

a.=o (zl.) (D
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Nota-se que sdao equacOes repletas de indices, isso por estarem sendo considerados
neur6nios individuais. Para que seja possivel escrevé-las de forma matricial, serdo definidas
duas representacdes adotadas e o produto de Hadamard.

e A aplicacdo de uma funcdao em um vetor ndo é definida na matematica, mas
convenciona-se neste trabalho que uma funcdo aplicada a um vetor nada mais
€ que aplicar a fun¢do em cada um dos seus elementos.

e De maneira similar, a derivada de um vetor sera dada pela derivada de cada
um dos seus elementos.

e O produto de Hadamard é menos usual, porém é definido na mateméatica como
o produto de elemento por elemento de uma matriz e é denotado pelo simbolo
sOj sendo s e j matrizes de mesmas dimensdes (NIELSEN, 2015;
MILLION, 2007).

De maneira mais elegante a equagdo 10 pode ser reescrita com a notacao de vetores e

matrizes pela equacdo 12, considerando as convengdes acima.

! I Al-1 I
A'=c(W A +B) (12)
Sendo, A' o vetor de ativacdes de j neurdnios da camada I, W'a matriz de dimensdes
j x k com todos os pesos que conectam a camada I com sua antecessora [—1, A'"* o vetor de
ativacdes de k neurdnios da camada [—1e B'o vetor de bias dos j neurdnios da camada .

De maneira analoga a equacdao 12, podemos reescrever a equacao 11, onde

7Z'=w'A +B' representa o vetor de weghted inputs da camada I.

Al:o‘(zl) (13)

2.6.5 Backpropagation

Como visto anteriormente, a funcao degrau, utilizada por Rosenblatt (1961), ndo possuia
uma caracteristica fundamental para a aplicacdo do método gradient descent, ela ndo é
continua e, portanto, ndo é diferenciavel.

O algoritmo de backpropagation é uma maneira inteligente de computar as derivadas
parciais da funcdo de custo em relacdo aos parametros de aprendizado de uma rede (seus

weights e biases).
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Observa-se que a ativacao de uma camada é dependente de todas as camadas anteriores,
com excecdo da camada de input dos dados. Sendo A' o vetor de ativacdes da tiltima camada
de uma rede com input X, a aplicacdo sucessiva da equacdo 12 descreve a dependéncia entre

as camadas e é representada pela equacdo 14.

A=g(W'o (W o(..W?o(W X+B")+B*)+B )+B') (4

Dessa forma, nota-se que a saida de cada camada é uma fungdo composta e, portanto,
para encontrar a derivada parcial da funcdo de custo em relacdo a um peso especifico é

necessario aplicar a regra da cadeia, como demonstrado na equacgdo 15 e ilustrado na figura 7.

dC _ oc 0a. da. ' 802” aalj

(15)
[ L L-1 L-2""° l I

. ~ . . ~ 1
Figura 7 - Representacdo da derivada parcial do custo em relagdo a w .
r;l:,-"l r!:.l:':' E

e

a’,
.IT.

-Jfﬂ\' v on [
: --/J r;r.‘F

Fonte: Nielsen (2015).

Nao é necessario esfor¢o para demonstrar o motivo das redes neurais dependerem de um
algoritmo que simplifique este processo. Baseado na mesma abordagem da passagem de
informacdo do feedforward, a ideia do backpropagation consiste em propagar o valor das
derivadas necessarias e, posteriormente, a descida do gradiente partindo da ultima camada
para a primeira, computando o seu efeito em cada uma delas.

A adaptacdo de uma abordagem proposta por Aflak (2018), similar a de Nielsen

(2015), permite visualizar seu funcionamento com mais clareza. Subdividindo uma camada
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qualquer [ em duas, uma denominada de dense layer e outra de activation layer o fluxo de

informacao no feedforward pode ser representado na figura 8.

Figura 8- Feedforward em uma camada I dividida em dense layer e activation layer.
A Z' Al
S——— Dense Layer —— | Activation Layer | =P

Fonte: Adaptado de Aflak (2018).

Sendo a dense layer a camada cuja entrada é o vetor de ativacdo de k neurdnios de A"’
que se ligam a j neurdnios da camada A', sua saida é Z', o vetor de weighted inputs. E
activation layer a camada que apenas aplica a fungdo de ativacdo em todos os elementos do
vetor Z' resultando na saida A'.

Figura 9 - Representacdo do feedforward e backpropagation em uma camada ! subdividida.

AT Z Al
—_— —_— EE—
Dense Layer Activation Layer
- - 4+
aC daC’ oC'
A1 VA dA!

Fonte: Adaptado de Aflak (2018).

De maneira analoga, o backpropagation é representado no fluxo da figura 9, pelas setas
localizadas na sua parte inferior e, a partir da andlise de ambas as camadas, serdo

apresentadas as 4 equacdes necessarias para sua aplicagao.
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® Dense Layer

Figura 10 - Representacdo da Dense Layer
—l —
Dense Layer

<+ <+
aC aC
0A 0z

Fonte: Adaptado de Aflak (2018).

Foram retirados os indices da camada para fins de simplificacdo na notacdo, uma vez

que a camada € arbitraria. O vetor Z é dado pela equagao 16.

21| [witer +wigag + -+ wygay + by
2 woral + wray + - -+ + woray + b
Z— 2| = |waetwnet 2k 1 02 16)
| 25 ] | wjia] —+ wjoa + -+ W kA —+ bJ_
A equacdo 16 pode ser reescrita de forma matricial, como mostra a equagao 17.
21 wyp wyg v Wy | |ag by
29 Wy W v Wk | |az by
Z - . - . . ‘e . . _|— . (17)
ZJ‘ wﬂ wﬁ e “UJ-‘jg- ag bj

Dado um peso qualquer W, a derivada parcial do custo C em relagao a W, é dada

pela equacao 18.
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00 _9C 9x 90 Om  OC 0 OC Dy
au-“f-n’ a’jl au}f‘d a:? au-“m’ a’jc- au}f‘d a’j.,l' au-“m’

(18)

O Unico z cuja derivada parcial da equagdo 18 ndo é zero € o Z, correspondente ao peso
W4, pois esse é o unico elemento de Z que depende de W, e o valor desta derivada é a
ativacao correspondente d,. Entdo, simplificando, a derivada parcial do custo em relacdo a

qualquer peso é dada pela equagao 19.

oC  9C dz. 9C
p— — a
ow., 0O0z.0w., 0z d (19)

Representando todas as derivadas parciais do custo em relacdo a todos os pesos em
uma matriz pela equacao 20, e reescrevendo-a em forma de um produto matricial, chega-se a

primeira das quatro equagdes fundamentais para o método, a equagao 21.

- 9C 9C. . 9C T CoC . 9C . AC ]
au-‘ll au-‘lg ow k dz ai 0z L 0z a
oc_ ac” . _aC aéa @a‘ ac'*a
AC _ | dwy Owan dwyr | | 9291 9252 D2y Uk (20)
ow : : S o : : :
oC_ aC aC ac . aC aC
| dwj dwjo ow jy, | | Oz ai 8::..};0’2 8,’:..,.-0”'"_
-
dz
9C
aC | dz [ } _OC AT (21)
ow — | .| 41 a2 ar| = 574
oC
| 9% |

Partindo da equacdo 17, de maneira analoga a derivada parcial do custo em relacdo aos
pesos, é possivel obter a derivada parcial do custo em relacdo aos biases, representada pela

equacao 22.
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Assim como o0s pesos, a Unica derivada parcial que ndo é zero é a de Z. correspondente

ao bias b, e essa por sua vez é igual a 1, j4 que ndo h4 nenhum fator que o multiplica. Entdo,

obtém-se a equagao 23, a segunda equacdo necessaria.

9C _

leh
by
ac

dby

_8@_

o0
)z
¢

0z

aC

| Oz _

aC

— 07 (23)

Foram obtidas as matrizes com as derivadas parciais necessarias para atualizar os

parametros de aprendizado no método da descida do gradiente. A dense layer ainda fornecera

a terceira equacdo necessaria para o backpropagation, a derivada do custo em relagdo as

entradas, representada pela equacao 24.

[ OC T
da;
IC

aC
o‘a;‘.

&-'Jag —

[ oC 9z aC 0z
dz1 daq + Ozo Oay +
oC 0z1 aC Oz N
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| 021 day, dzo day,
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]
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Trabalhando com a derivada parcial do custo em relagdo uma entrada arbitraria a.,

pela equacao 25.

oC  aC E):l AC Oz i O‘C Dz T AC 0z,
da. Oz Oa, O‘~o da, d,,r,r da, dz; da,

(25)

Todos os termos da equacao 25 sao diferentes de zero, pois o fator d. esta presente em
todos os elementos do vetor Z, e a derivada parcial de qualquer Z; em relagdo a d, é o peso

W, que conecta o neurdnio ¢ da camada anterior ao neurénio d da camada atual, resultando

na equacao 26.

en roC oC aC .
- 9z, Wil + B2y W21 + -+ W)
aC aC ac ac
C _ o | _ |Gzt gt + 5wy 8
0A 5
ac aC ac
| Day, | 52, Wik + g, Wak + + 9 O.~ Wik |

0C .
O vetor A pode ser escrito como o produto entre a transposta dos pesos e o vetor de

derivadas parciais do custo em relacdao aos weighted inputs, obtendo a equacdo 27, a terceira

das quatro necessarias.

da; wyp W vt Wiy 021
&)_(Jf w w *wj- oC
C‘_)_C o 8&2 o 12 22 J2 822 [1,/,:1—. C)C
OA T - T S : T oz (@D
oC aC
_— wUnM 1. wWoi. e Wi e
| By, | Wik W2k Wikd | 5z,
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A quarta e ultima equacdo necessaria para o backpropagation sera obtida pela analise

da activation layer.

e Activation Layer

Figura 11 - Representacao da Activation Layer.

Z A
e S
Activation Layer
4 <+

oC oC
0Z A

Fonte: Adaptado de Aflak (2018).

Na camada de ativacdo, ndo ha parametros de aprendizado para atualizar, ela apenas
aplica a funcdo de ativacdo em todos os weighted inputs que ela recebe da dense layer
resultando na saida que sera utilizada como entrada pela proxima dense layer. Entdo resta
apenas uma relacdo necessaria a ser encontrada, a derivada parcial dos weighted inputs em
relagcdo ao custo na camada de ativacgao.

Agora Z é o vetor de entradas da camada de ativacdo, a derivada parcial de seus

elementos em fungado do custo pode ser representada pela equagao 28.

9Cq  [OC da -
9z1 day Oz
ife] oC daz
‘ : das O
g—(‘zj — C)ZE — (12. =2 (28)
_azj _ _aﬂ,j 5Zj _
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Esse vetor pode ser representado pelo produto de Hadamard e as ativacOes estdo
relacionadas aos weighted inputs pela equacdo 11, por a=o (z). Resultando na equacdo 29, a

quarta e dltima equagao necessaria.

~0C T - Oay T - O0C 7 ~ _
day dz1 dag O'f(,?,'l)
3_('} day. i O'f(”‘ )
acC dag 0zo . das ~9 _ac ,
a9z : ® : = : ©) : —JOJ(Z) (29)
9¢ day ¢ (.
_5’t1j_ | Oz _‘c)aj_ |0 (’"J)-

Em resumo, todas as equacoes utilizadas na dense layer dependem apenas das
. - oC . . .
derivadas parciais representadas pelo vetor a7 obtidos o0s seus valores é possivel

implementar computacionalmente o calculo da derivada parcial do custo em relagao a todos

oC _dC 6C _oC
0s pesos e biases de maneira simples, através das igualdades = ow oz ® 9B 3z das

equacoes 21 e 23, respectivamente. Essas duas equacOes, sdo as Unicas necessarias para
atualizar os pesos e biases na aplicacao da descida do gradiente.

As outras duas equacOes apresentadas sdo as que dao continuidade ao ciclo. Uma vez

obtida a derivada parcial do custo em relacao aos weighted inputs ——, da dense layer podera

0Z

ser obtida a derivada parcial do custo em relacdo as ativacoes de entrada da dense layer,

C
SA WTS—Z (Equagao 27), ela sera equivalente a derivada parcial do custo em relacao as

ativacoes de saida da activation layer da camada anterior. Obtida a derivada parcial do custo

0C _0C
da activation layer é possivel obter = 57 A Qo (Z)

0C
em relagdo as ativagOes da saida, =— A
(Equacao 29), que nada mais é do que a derivada parcial do custo em relacao aos weighted
inputs para a dense layer, seguindo para as demais camadas de maneira sucessiva.

Entdo, da mesma maneira que estabelecidos os pesos e biases iniciais, basta fornecer
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o input para que ocorra a etapa de propagacao de informagdo da primeira para ultima camada,

ou feedforward, basta fornecer na tltima camada o valor da derivada da funcdo de ativacao

em relacdo aos weighted inputs do vetor Z , 0 "(Z), e a derivada da funcdo de custo em
s v ... 0C .

relacdo as ativacoes 5 A Para que ocorra a etapa de backpropagation.

Fornecidos esses valores da tltima camada, essas 4 equagoes sdo aplicadas de forma
sucessiva até a primeira camada. Em seguida é realizado método da descida do gradiente, em
todos os elementos da matriz de pesos e da matriz de biases, camada por camada, como
representado pelas equagdes 30 e 31, respectivamente, que nada mais sdao do que a

representacdo matricial das equacgoes 8 e 9.

oC
Wn+1=Wn—n—aW (30)

0C

B =B —n———-
m+1 m UaBm (31)

Ao realizar esse processo a funcdo de custo tenderd a um minimo local, e os
pardmetros de aprendizado serdo ajustados para obter um maior niimero de outputs A' que
coincidam com o output esperado Y (X), para todas as entradas X fornecidas na base de
dados de treino da rede. O ntimero de vezes que isso deve ser repetido (epochs), o valor do

learning rate, os valores iniciais dos parametros de aprendizado serdo abordados a seguir.

2.7 Hiperparametros, otimizagoes e boas praticas

O intuito de treinar uma rede neural é que ela obtenha sozinha seus parametros de
aprendizado que permitam fornecer os outputs desejados. Porém, os parametros como
learning rate, nimero de epochs, mini batch size, valores iniciais dos parametros de
aprendizado, numero de neur6nios ou nimero de camadas, sdo parametros estabelecidos
manualmente na implementacdo da rede neural e sdo denominados como hiperparametros.

Eles serdo abordados um a um com suas possiveis otimizacGes e boas praticas.

2.7.1 Learning rate

O learning rate representado nas equacgOes anteriores por n é o escalar que altera o

tamanho da variacdo dos parametros de aprendizado para cada iteracdo do gradient descent.
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Como pode ser visto nas equacoes 30 e 31, cada peso e cada bias sera subtraido pela derivada
parcial do custo em relacdo a ele multiplicada por 1, o que torna tentador atribuir valores
altos a esse escalar, dessa maneira aumentando a velocidade com que se chega no minimo
local.

Porém, ao fazer isso, provavelmente ndao havera convergéncia para um minimo local.
A fungdo de custo pode acabar sendo levada para outros minimos locais sem conseguir
permanecer em algum deles e, mesmo que consiga, ela possivelmente ndo apresentara
convergéncia dentro deste minimo local. Ela ficard oscilando ao se aproximar do minimo,

como pode ser representado visualmente na figura 12.

Figura 12 - Nao convergéncia por um learning rate
com valor alto
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Fonte: https://bit.ly/3i52zAN8

Para que isso seja evitado pode-se adotar um valor pequeno para este parametro,
porém a convergéncia se dara de maneira muito mais lenta, principalmente se a funcao a ser

minimizada possuir milhdes de variaveis, como pode ser representado na figura 13.



Figura 13 - Convergéncia com learning rate menor.

Segundo Yan-Tak (2018), uma abordagem comum é adotar n=0.01/n, sendo n o
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Fonte: https://bit.ly/3i52AN8
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nimero de amostras de treino utilizadas, como um valor inicial e ir realizando ajustes finos

através de testes. O objetivo é obter um valor que cause uma convergéncia rapida e para um

intervalo de valores razoavel, que varia de aplicagdo para aplicagdo, uma convergéncia ideal

pode ser representada pela figura 14.

Figura 14 - Representacao de uma convergéncia

otimizada.
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Fonte: https://bit.ly/3i52AN8
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2.7.2 Epochs

Epochs, ou épocas de treino, é apenas o nimero predeterminado de vezes que o ciclo
feedforward e backpropagation sera repetido para os inputs de treino fornecidos. O numero
de épocas necessarias varia bastante e esta quantidade esta atrelada a um dos maiores

problemas das redes neurais, o overfitting, que sera abordado posteriormente.

2.7.3 Stochastic gradient descent e mini batch size

Quando se aplicam os métodos de backpropagation e gradient descent, o mais usual é
determinar o learning rate como um escalar arbitrario a, com valor inicial de 0.01, dividido
pelo nimero n de amostras da base de dados de treino que sera utilizado pela rede para

atualizar os parametros de aprendizado, como pode ser observado pela equacdo 32.

n= ; (32)

Idealmente, a cada epoch, o gradient descent é aplicado em todas as amostras do
conjunto de treino. Porém, isso pode tornar o treino da rede substancialmente mais lento, para
contornar este problema é utilizado um método denominado stochastic gradient descent. Ele
consiste em organizar o conjunto de dados de treino aleatoriamente e, em seguida, dividi-lo
em mini batches com um numero arbitrario de amostras com tamanho denominado de mini
batch size.

Entdo, é aplicado o método gradient descent sobre essa amostra consideravelmente
menor, o que traz ganhos de tempo e custo computacional. Segundo Bottou (2012), a
convergéncia deste método é quase sempre garantida em condi¢oes moderadas e seu valor
médio é aproximadamente igual ao valor médio obtido utilizando-se todas as amostras
disponiveis.

Segundo Bengio (2012), sdo usualmente utilizados valores de mini batch size sendo
poténcias de 2 partindo de 32 até 512. No paper de Keskar et al (2017), os pesquisadores
observam indicios de que mini batches maiores degradam a qualidade do modelo em questdao

de capacidade de generalizacao.

2.7.4 Valores iniciais dos parametros de aprendizado

Segundo Nielsen (2015), uma abordagem comum é inicializar uma rede com pesos

aleatorios e biases com valor zero. Uma vez que a derivada parcial do custo em relacdo aos
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biases é dependente apenas da derivada parcial do custo em relacao aos weighted inputs,
zerar seus valores iniciais ainda permitira sua atualizacdo normalmente. Isso ja se torna
inviavel para os pesos, se seu valor inicial for zero, todas as ativacdes serdo zero e a rede ndo
tera a capacidade de aprender.

Porém, ha maneiras melhores de iniciar os pesos do que apenas atribuir valores
aleatdrios sem analise prévia. Um bom método para inicializa-los é atribuir a eles valores de
uma distribuicdio normal com média 0 e desvio padrio 1/vn, por conta da saturacio do
neuronio, que sera abordada posteriormente. Mas, a ideia é que pesos mais concentrados em

um intervalo de valores auxiliam no aprendizado da rede.

2.7.5 Numero de neuronios e camadas

A quantidade de parametros de aprendizado é definida pelo nimero de camadas e
neuronios em cada uma delas. Quanto mais parametros de aprendizado uma rede possuir,
mais ela conseguira “se moldar” aos dados do conjunto de treino. Mas, ndao necessariamente,
isso é benéfico por conta de um fendmeno denominado como overfitting que, essencialmente,
prejudica a capacidade da rede de generalizagao.

Segundo Brownlee (2018), ndo ha uma heuristica para o nimero de neur6nios que
devem existir em cada camada ou o numero de camadas que devem constituir a rede,
pesquisar por papers sobre problemas similares pode ser um bom ponto de partida para
atribuir o numero inicial de neur6nios e camadas na arquitetura utilizada.

As redes deste trabalho terdo no maximo duas camadas, por conta de um problema
denominado vanishing gradient que esta relacionado as funcdes de ativacao e serd abordado

posteriormente.

2.8 Problemas comuns das redes neurais

2.8.1 Saturacdo do neurdnio

Ao iniciar o treino de uma rede neural atribuindo aos pesos valores aleatérios, muito
provavelmente os neurdnios da camada de saida da rede fornecerdo valores distantes dos
valores esperados, o que é esperado. Porém, caso algum neur6nio de saida tenha valores
muito préoximos a 1 ou a 0, sendo sua fun¢do de ativagdo a sigméide e sua funcao de custo o

EQM, ocorrera um fendmeno denominado de saturacdao do neurénio.
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Esse fendmeno ocorre por conta da derivacao da sigmoide na etapa de backpropagation,
dada pela equacéo 33, onde pode-se observar que se z for grande o suficiente para que o (z)
se aproxime de 1, o valor da derivada se aproximara de zero. E caso z seja pequeno o

suficiente para que o (z) se aproxime de zero, o valor da derivada sofrera o mesmo efeito.
0 (z)=0(z)(1-0(z)) (33)

Com a funcgdo de custo EQM, a derivada parcial do custo em relacdo a um peso é
dependente da derivada da sigméide, como pode ser visto pela equacdo 34. Dessa forma, se
o " (z) for préximo de zero, a taxa de aprendizado dos pesos atrelados a este neurdnio sera
proxima de zero tornando-os irrelevantes para o aprendizado da rede. Isso causa uma lentidao

no aprendizado ou learning slowdown.

0C ,
m:(a_)’)(f (Z)X (34)

Para contornar essa limitacdo, a funcao de custo mais utilizada, dado que a funcdo de
ativacdo é a sigmoide, é a cross-entropy cost (equacao 5). Pois, sua derivada em relagao aos

pesos, equacao 35, ndo depende da derivada da sigmoide.

oCc _1
W:EZ XJ(G(Z)—Y) (35)

J X

Ao escolher essa funcdo de custo, o problema é resolvido para a saturagcdo dos neuronios
da camada de saida, porém, esse mesmo problema pode ocorrer nas hidden layers. Se o
weighted input z de qualquer neurdnio for um valor que torne a derivada da sigmoide
proxima de zero os pesos atrelados a esse neurdonio sofreram o mesmo learning slowdown.
Infelizmente para esse problema nas hidden layers a alteracao da funcao de custo para cross-
entropy cost ndo causa nenhum efeito, j4 que inevitavelmente serd utilizada a derivada da
sigmaide na etapa de backpropagation.

Uma maneira de tentar suprimir esse problema é na inicializacdao dos pesos e como
descrito anteriormente, um bom método para fazer isso é inicid-los como valores de uma
distribuicio normal com média 0 e desvio padrdo 1/v/n. Se os pesos iniciais tomarem valores
suficientemente maiores que 1 ou menores que -1, haverd um fator multiplicativo nas suas
conexoes, que pode causar um weighted input resultante grande o suficiente (tanto positivo

quanto negativo) para saturar o neurdonio. Tornar os pesos iniciais mais concentrados em
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torno da média O auxilia diminuindo a quantidade de neur6nios em que isso ocorre

(NIELSEN, 2015).

2.8.2 Overfitting e underfitting

Quando a rede neural continua a melhorar sua acurdcia no conjunto de dados de
treino, mas ndo apresenta melhorias de acuracia no conjunto de dados de teste, ela esta
adaptando seus parametros para obter especificamente os outputs esperados do seu conjunto
de treino, o que causa um grande problema. Se a rede se especializar em encontrar os outputs
esperados, ndo desempenhara bem de forma generalizada em dados desconhecidos, isso é
denominado overfitting.

Por isso ele é o fendmeno dominante na escolha do nimero de epochs ou épocas de
treino, assim que ndao houver mais uma melhoria na acuracia dos dados de teste €
recomendavel parar o treinamento da rede. Pois, dali em diante a rede apenas aprendera
peculiaridades do seu conjunto de dados de treino, este método é conhecido como early
stopping.

Underfitting é exatamente o contrario, parar o treino de uma rede sem que ela alcance
0o maximo de acuracia no conjunto de testes prejudicara seu desempenho em novos dados,
uma vez que ela ainda poderia aprender mais sem perder sua generalizagao (NIELSEN,
2015).

2.8.3 Vanishing Gradient

Em uma das etapas de execucao do backpropagation ocorre uma multiplicacdo pela
derivada da sigméide para cada uma das camadas da rede. A fungdo sigméide possui valores
entre 0 e 1 e sua derivada também, como pode ser visto na equacdo 33. Este fato causard um
efeito de diminuigdo no gradiente a cada camada presente na rede, de maneira exponencial.

Sendo o gradiente cada vez menor, a atualizacdo dos parametros de aprendizado se
tornara cada vez mais lenta. Portanto, é necessario tomar um grande cuidado com esse
problema, principalmente em redes neurais profundas com muitas camadas (NIELSEN,

2015).
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2.9 Categorical Encoding

Como a rede neural utilizada neste trabalho utiliza aprendizado supervisionado (inputs e
outputs sdo fornecidos) e o problema abordado é um problema de classificagdo das emocdes,
uma técnica denominada encoding precisa ser aplicada para viabilizar o treinamento da rede.

Encode significa “modificar informacdo de forma que possa ser processada por um
computador” (ENCODE, 2021). Categorical Encoding é apenas a representacdo de dados
categdricos por numeros ou vetores que serdo utilizados pela rede no processo de
treinamento.

Uma variavel categorica é uma variavel cujos valores sdo representados por
classificagoes. A variavel “cor”, por exemplo, pode assumir valores classificados como
“azul”, “verde” e “vermelho”. Essa varidvel pode ser representada pelo método de One Hot
Encoding como um vetor binario de 3 posicoes, onde cada um deles representa uma cor e
poderia ser visto como: Azul = [1,0,0], Verde = [0,1,0], Vermelho = [0,0,1]
(BROWNLEE, 2019).

Este método é particularmente 1itil em redes neurais, ja que a camada de saida nada mais
€ do que um vetor com valores entre 0 e 1, onde a posicdao de maior valor indicara a sua
categoria. Dessa forma, se a saida de uma rede treinada para detectar cores em um pixel
assumir o valor [0.89,0.13,0.06 ], ela indica que o pixel possui a cor azul, caso seja o valor

correto, significa que o output esperado é, de fato, o vetor [1,0,0].



35

3 METODOLOGIA

3.1 Base de dados

Para o treinamento das redes neurais foi utilizada a base de dados FER-2013 (KAGGLE,
2020). Ela consiste em mais de 30 mil imagens em escala de cinza de 48x48 pixels divididas
em um conjunto de treino e um conjunto de teste, classificadas em 7 emocdes: Raiva, nojo,
medo, felicidade, tristeza, surpresa e neutralidade. Distribuidas de acordo com as tabelas 1 e
2.

Tabela 1 - Quantidade de imagens por emocao no conjunto de Treino.

Emocao Quantidade de imagens
Raiva 3995

Nojo 436

Medo 4097

Felicidade 7215

Neutralidade 4965

Tristeza 4830

Surpresa 3171

Tabela 2 - Quantidade de imagens por emocdo no conjunto de Teste.

Emocao Quantidade de imagens

Raiva 958

Nojo 111

Medo 1024

Felicidade 1774

Neutralidade 1233

Tristeza 1247

Surpresa 831
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Figura 15 - Exemplos de emogdes da base de dados.

Ang?y Disgusted Fear Happy Neutral Sad Surprised
Fonte: (KAGGLE, 2020).

3.2 Linguagem e Ambiente de execugao utilizados

As primeiras redes foram treinadas utilizando Python 3.7.1 no Google Collaboratory,
que é um ambiente de execucdo em nuvem fornecido pelo Google Research. Nele, é possivel
executar cddigos em Python tendo acesso a uma maquina com 12GB de memoéria RAM e
100GB de disco que executa codigo por até 12h ininterruptas, de forma gratuita.

Apés determinados parametros com melhor performance dentre as redes treinadas,
foram treinadas 66 redes em um notebook dell vostro 5470 com 8GB de RAM, com
hiperparametros proximos a estes pré-determinados para fins de comparacdo e validacdo de

uma rede 6tima entre elas.

3.3 Caodigo utilizado

O cédigo utilizado foi adaptado do cédigo de Dobrzanski (2016), que é uma versdo
atualizada para Python 3 do ja disponivel no livro e GitHub de Nielsen (2015) feito em
Python 2.7.

Foram utilizadas também bibliotecas como, numpy, matplotlib e pandas para auxiliar no

tratamento e analise dos dados.
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3.4 Tratamento dos dados

3.4.1 Encoding dos dados

Como cada imagem do dataset possui dimensoes de 48x48 pixels, seus valores foram
todos normalizados, dividindo-os por 255 (maximo de intensidade possivel de um pixel). Em
seguida elas foram transformadas em vetores de uma coluna e 48x48 = 2304 posi¢des, sendo
eles as entradas na camada de input da rede.

Foi realizado um categorical encoding na classificacdo das emocoes, a cada uma das 5
emocoes foi atribuido um niimero de 0 a 4, sendo representados pela tabela 3.

Tabela 3 - Emocoes e seus respectivos valores de encoding.

Emocao Valor do Enconding | Vetor de One Hot Encoding
Raiva 0 [1,0,0,0,0]
Medo 1 [0, 1,0, 0, 0]
Felicidade 2 [0, 0, 1, 0, 0]
Neutralidade 3 [0, 0,0, 1, 0]
Tristeza 4 [0,0,0,0, 1]

Entdo, para cada emocgao é atribuido um vetor de 5 posicdes cujo valor do encoding
representa a posicdo que possui valor 1. Dessa maneira sera possivel comparar diretamente a

camada de saida que é definida com 5 neurdnios.

3.4.2 Balanceamento dos dados

Quanto maior a quantidade de dados para treinar uma rede, melhor. O conjunto de
dados utilizado possui aproximadamente um minimo de 4 mil imagens por emocao, exceto as
emocoes de nojo e surpresa que possuem 436 e 3171 imagens, respectivamente.

Por conta do desbalanceamento dos dados em relagdo as emogoes de nojo e surpresa,
para evitar um viés nos dados de treinamento da rede, elas nao foram utilizadas. Restando

apenas 5 emocoes para a analise.
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3.5 Treinamento das redes

3.5.1 Parametros iniciais

Nas primeiras redes treinadas alguns parametros utilizados foram escolhidos com base
em heuristicas gerais, como learning rate inicial de 0.01, e outros com base em parametros
otimos para o problema de reconhecimento de nimeros escritos a mao, MNIST abordado por

Nielsen (2015), como mini batch size de valor 10 e 30 neurdnios por camada.

3.5.2 Teste dos parametros

Apods observar a acuracia de diversos parametros foram utilizadas redes com apenas
duas hidden layers, uma vez que o problema de vanishing gradient torna muito mais lento o
processo de treinamento de uma rede com multiplas hidden layers se a fungdo de ativacao
possui sua imagem contida entre 0 e 1.

Definido o nimero de hidden layers, foram testados niimeros de neurénios proximos
a 5000 como apresentados por Nordén (2019), e empiricamente learning rates proximas a 0.1
e ndmero de epochs superiores a 100, demonstraram uma melhor performance e
evidenciaram pontos que serdo discutidos nos resultados.

A partir disso determinou-se intervalos de valores de epochs, learning rate e nimero
de neur6nios por camada para cada uma das redes a serem comparadas como pode ser visto
na tabela 4.

Tabela 4 - Hiperparametros testados.

Hiperparametro Intervalo de Valores

neurénios por camada | 50; 100; 150

learning rate 0.1; 0.2; 0.3; 0.4; 0.5
epochs 100; 200; 300
mini batch size 32

3.5.3 Refinamento dos parametros

Comparando os resultados das 45 redes treinadas com os parametros de teste, houve
motivagado para treinar mais 36 redes com parametros refinados. Tal motivagdo sera discutida

nos resultados, eles podem ser observados na tabela 5.
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Tabela 5 - Hiperparametros refinados

Hiperparametro Intervalo de Valores

neuroénios por camada 100; 150

learning rate 0.05; 0.1; 0.15
epochs 100; 200
mini batch size 16; 32; 64

3.5.4 Avaliagdo de performance
A partir dos dados obtidos para cada uma dessas redes, foram escolhidas as 3
melhores em questdo de performance, adotando como medida a melhor acurdcia média
exibida no conjunto de imagens de teste e com o menor desvio padrao, a partir da epoch 50.
O numero de epochs a partir do qual foi medida a performance foi determinado pelo
método de early stopping utilizado para evitar o problema de overfitting observando os

graficos de acurécia da rede sobre o conjunto de teste.
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4 RESULTADOS

Nesta secdo serdao discutidos os resultados obtidos ao longo do treinamento das redes
com diversos hiperparametros, assim como destacados os pontos que levaram a escolha dos

mesmos e das redes com melhores performances.

4.1 Redes iniciais

Os hiperparametros utilizados no treinamento da primeira rede foram os apresentados

pela tabela 6.
Tabela 6 - Hiperparametros primeira rede de treino.
Nodes / hidden layer 30
Mini batch size 10
Epochs 30
Learning Rate 3

Esta foi a tnica rede treinada com apenas uma hidden layer, a acuracia média obtida
sobre o conjunto de teste desta rede foi de 22.2%, que se aproxima da acuracia esperada de
20% ao se escolher uma emocao aleatoriamente entre as 5 classificadas.

Isso esta relacionado ao fato de que os hiperparametros escolhidos foram os mesmos
que Nielsen (2015) utiliza em seu livro para obter uma acurdcia superior a 95% no
reconhecimento de digitos escritos a maos, um problema completamente diferente. Seus

resultados de nada serviriam para identificar emog¢des em imagens.

4.2 Busca por parametros

As 66 redes treinadas foram divididas em duas levas de parametros, onde na primeira
delas foram treinadas 30 redes e na segunda 36. As motivacOes e resultados sao

demonstrados a seguir.

4.2.1 Primeira leva de treinamento

Foram treinadas mais de 20 redes no google colaboratory a fim de delimitar um range
de parametros promissores a serem utilizados na primeira leva da procura de uma rede com
melhor acuracia.

Partindo dos trabalhos de Bendio (2012) e Keskar et al (2017), como mencionado na

secdo 2.7.3, o mini batch size escolhido para iniciar a busca foi de 32 amostras por mini
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batch. O ntimero total de neuronios de cada uma das redes foi definido na mesma ordem de
grandeza dos 5000 tidos como melhor quantidade no paper apresentado por Nordén (2019)
comentado na secao 3.5.2. A partir do treinamento das redes no google colaboratory foi
observado um melhor desempenho utilizando learning rates em torno de 0.1.

O periodo de uso limitado do google laboratory impossibilita uma melhor avaliacao
do numero de epochs, pois quanto maior este nimero maior o tempo de treinamento
necessario. Houve entdo a tentativa de treinar redes com todos os parametros listados na
tabela 4 em um dell vostro 5470. Porém, ap6s aproximadamente 158h de execucdao no
treinamento das redes, notou-se uma pior performance naquelas com learning rates
superiores a 0.2 e o codigo foi interrompido obtendo os resultados de treino de apenas 30
redes como primeira leva de treinamento. Excluindo, dessa forma, as redes com 150

neuronios por camada, como pode ser visto na tabela 7.

Tabela 7 - Hiperparametros das 30 redes treinadas na primeira leva.

Hiperparametro

Intervalo de Valores

neuroénios por camada

50; 100

learning rate

0.1; 0.2; 0.3; 0.4; 0.5

epochs

100; 200; 300

mini batch size

32

Dentre as 30 redes treinadas foram escolhidas as 3 com maior acurdcia média, que

resultantes dos hiperparametros apresentados na tabela 8.

Tabela 8 - Hiperparametros 3 redes com maior acuracia média da primeira leva.

Hiperparametro 1% Rede 2% Rede 3 Rede
neurénios por camada | 100 100 100
learning rate 0.1 0.2 0.2
epochs 300 300 200
mini batch size 32 32 32

Foi observado também uma tendéncia de estabilizacdo da acuracia no conjunto de

testes a partir da epoch 50, como pode ser visto nos graficos das figuras 16, 17 e 18.
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Figura 16 - Grafico test accuracy vs epochs 1° Rede, primeira leva.
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Figura 17 - Grafico test accuracy vs epochs 2% Rede, primeira leva.
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Figura 18 - Grafico test accuracy vs epochs 3* Rede, primeira leva.
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Suas acuracias médias e respectivos desvios padrdo sdo apresentados na tabela 9.

Tabela 9 - Média e desvio padrao das 3 redes com maior acuracia média da primeira leva.

Rede Acuracia Maxima Acuracia Média Desvio Padrao
12 2904 2688.313 138.604
22 2776 2585.52 135.221
3? 2538 2529.514 140.107

Das 5834 imagens do conjunto de teste, a 1* rede obteve acuracia média e acuracia

maxima na classificacdo das emocdes de aproximadamente 46% e 49.7%, respectivamente,

que é muito superior em comparacao aos 22% da primeira rede.

Dois fatores interessantes também podem ser observados nos graficos acima, a

influéncia do learning rate no tempo de convergéncia e também na dispersdao dos dados.

Ambos serdo comentados posteriormente.
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4.2.1 Segunda leva de treinamento

Baseado nos resultados obtidos pelo treino das primeiras 30 redes, foram treinadas mais
36 redes com parametros proximos aos das redes que apresentaram melhores performances
na primeira leva de treinamento, exatamente como descrito na tabela 5 da secdo 3.5.3.

Ap6s, aproximadamente, 151h de execucdo foram obtidas as 3 melhores redes dentre a

ultima leva de treinamento, essas redes possuem o0s hiperparametros listados na tabela 10.

Tabela 10 - Hiperparametros das 3 redes com maior acurdcia média na segunda leva.

Hiperparametro 1% Rede 2% Rede 3% Rede
neurénios por camada | 100 150 150
learning rate 0.05 0.05 0.05
epochs 100 200 100
mini batch size 16 16 16

Os resultados obtidos por elas sdao consideravelmente melhores e podem ser

observados na tabela 11.

Tabela 11 - Média e desvio padrdo das 3 redes com maior acuracia média da segunda leva.

Rede Acuracia Maxima Acuracia Média Desvio Padrao
12 2894 2752.306 72.889
22 2931 2750.422 99.623
3? 2863 2728.187 90.680

A estabilizacdo da acuracia parece se iniciar em torno do mesmo nimero de epochs da

primeira leva, 50. E pode ser observado nas figuras 19, 20 e 21.
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Figura 19 - Gréfico test accuracy vs epochs 1* Rede, segunda leva.
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Figura 20 - Grafico test accuracy vs epochs 2* Rede, segunda leva.
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Fonte: Elaborado pelo autor.
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Figura 21 - Gréfico test accuracy vs epochs 3* Rede, segunda leva.
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E notével a diminuicio das oscilacdes apresentadas pelos gréficos da segunda leva
comparados a primeira, essa diminui¢ao de barulho é associada ao mini batch size. Outro
ponto a considerar é o aumento na acuracia média e a diminuicdo do desvio padrdo, um fato
interessante é que o learning rate de todas as redes com melhor performance é o mesmo,

ambos os pontos serdo discutidos posteriormente.

4.3 Anélise dos hiperparametros com melhor performance

Dentre os resultados exibidos pelas 66 redes treinadas, as evidéncias de alguns fatores
teoricos sobre as redes neurais relacionadas aos hiperparametros se destacam e serdao

analisadas a seguir.

4.3.1 Learning rate

Durante a procura por um valor 6timo de learning rate, dois pontos principais foram
observados:
e A velocidade de convergéncia
e Acuracia para qual convergem os valores.
Sobre a velocidade de convergéncia, comparando os gréficos das figuras 17 e 18, a
acuracia da rede com learning rate = 0.1 parece comecar sua estabilizacdo na faixa das 50

epochs enquanto a rede com learning rate = 0.2 apresenta sinal de estabilidade na faixa de 25
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epochs o que é esperado ja que este é um termo na equacao do gradient descent que
influencia diretamente no quanto o valor do custo se aproxima do minimo local em cada
iteracao.

Apesar da velocidade de convergéncia ser diretamente proporcional ao learning rate, a
acuracia obtida ndao possui a mesma relagdao, uma vez que valores maiores deste
hiperparametro impossibilitam a fun¢do de custo atingir o ponto minimo de um vale local.
Estes dois pontos estdo representados nas figuras 22 e 23, que mostram os valores da funcao
de custo da 1% e 2? rede da primeira leva, respectivamente.

Figura 22 - Grafico training cost vs epochs 1% Rede,
primeira leva.
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Fonte: Elaborado pelo autor.

Figura 23 - Grafico training cost vs epochs 2° Rede,
primeira leva
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Enquanto o grafico da 2° rede (figura 23) mostra sinais de um inicio de estabilizacdo em
300 epochs, o grafico da 1° rede (figura 22) parece continuar convergindo cada vez mais para
zero. Apesar da velocidade de convergéncia da rede com maior learning rate ser maior o
valor obtido da fungdo de custo nao chega a ficar abaixo de 1.0, em comparagao, o learning
rate menor apresenta valores proximos a 0.5 em 300 epochs sem sinal de alterar essa
tendéncia de diminuicao.

Para as redes da segunda leva, nota-se algo interessante. Todos os learning rates das 3
redes com melhor performance sdo iguais e possuem valor de 0.05, o menor dos valores de
learning rate utilizados nos treinamentos. Isso também vai de encontro com a proposta
tedrica de que quanto menor o seu valor, mais o gradient descent conseguira aproximar o
valor do custo ao seu minimo local. O gréfico da fungdo de custo da 2° rede da segunda leva
(a unica dentre as 3 com 200 epochs), apresentado na figura 24, permite uma melhor

visualizacao.

Figura 24 - Grafico training cost vs epochs 2% Rede, segunda leva.
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Fonte: Elaborado pelo autor.

Na figura acima ndo ha sinais de alteracdo na taxa de variacdao da curva em direg¢do ao
minimo da funcao de custo, em 200 epochs, o que implica em uma convergéncia mais lenta.
Em contrapartida, os nimeros obtidos na minimizacao da fun¢do de custo sao muito mais
animadores. E notdvel também a diminuicdo das oscilacdes nos graficos das redes da segunda

leva, isso se deve ao mini batch size e sera abordado a seguir.
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4.3.2 Mini batch size

Segundo Keskar et al (2017), um tamanho maior no niimero de amostras utilizadas em
cada mini batch causa uma degradacao significativa na qualidade do modelo em relacdo a sua
habilidade de generalizagao.

Nos resultados da segunda leva, ndo foi apenas o menor learning rate que demonstrou
a melhor performance, mas também o menor mini batch size foi o hiperparametro utilizado
pelas 3 redes com melhor performance. E, ao contrario da primeira leva, foram utilizados 3
valores (16, 32 e 64) a fim de comparar os seus efeitos sobre as redes. As figuras 25, 26 e 27
mostram os graficos da rede classificada como a melhor dentre as da segunda leva e seus 3

mini batch sizes utilizados.

Figura 25 - Gréfico test accuracy vs epochs 1* Rede, segunda leva, mini
batch size 16.
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Figura 26 - Grafico test accuracy vs epochs 1* Rede, segunda leva, mini
batch size 32.
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Fonte: Elaborado pelo autor.

Figura 27 - Gréfico test accuracy vs epochs 1* Rede, segunda leva, mini

batch size 64.

2600 - T
2 2400 1 L
&
=
] ||
@
H 2200 A I
g \

2000 A

12800 ~

0 20 40 &0 80 100
Epochs

Fonte: Elaborado pelo autor.

Fica evidente, pelos graficos acima, que ha uma piora consideravel na acuracia da rede

sobre o conjunto de testes quanto maior o mini batch size utilizado. Além de oscilagdes cada
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vez maiores, as acuracias obtidas foram cada vez menores onde as maximas praticamente nao

chegaram a alcangar 2800 emocdes classificadas corretamente.

4.3.3 Epochs e overfitting

Quanto maior o nimero de epochs mais a funcao de custo se aproximara do seu
minimo local, o que ndo implica necessariamente em uma melhor performance quando
aplicada em dados desconhecidos. O fendmeno overfitting é um problema tentador que pode
levar a crenga de que quanto mais epochs melhor a rede performard, se for analisada apenas a
acuracia nos dados de treino.

Ao observar a acuracia neste conjunto, os resultados sao incrivelmente animadores, as
figuras 28 e 29 mostram os resultados obtidos para a 1° e 2° redes da segunda leva de treino,

respectivamente.

Figura 28 - Gréfico training accuracy vs epochs 1* Rede, segunda leva.
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Figura 29 - Gréfico training accuracy vs epochs 2* Rede, segunda leva.
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O namero de emocoes classificadas corretamente no conjunto de treino nao mostra
tendéncia alguma em parar de aumentar e, de fato, quanto maior o nimero de epochs maior
serd o nimero de imagens classificadas corretamente. Porém, como discutido antes, a
acuracia no conjunto de testes apresenta uma estabiliza¢do iniciada no maximo por volta das
50 epochs.

Como dito na secao 2.8.2, todo o treino realizado a partir do ponto que a acuracia de
teste se estabiliza, na realidade, é prejudicial para a performance da rede. O que ela esta
fazendo aumentando o nimero de classificacGes corretas do conjunto de treino é apenas uma
“memoriza¢do” do mesmo. Dessa forma, o indicado é parar o treinamento quanto antes for

detectada a estabilizacdo da acuracia no conjunto de testes.
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5 CONCLUSAO

Considerando todos os fatores apresentados anteriormente, a melhor rede obtida entre
as 66 treinadas foi a rede com 100 neurdnios por hidden layer, 0.05 de learning rate, mini
batch size de 16 e 100 epochs de treinamento, coincidentemente classificada como 1° rede da
segunda leva.

Os fatores que levaram a essa conclusao sdo os que beneficiam uma melhor acuracia em
um aspecto generalizado, que é o principal objetivo da drea de machine learning. Entre estes
fatores os mais decisivos foram a acuracia média no conjunto de testes de 47.17% (maior
entre todas as testadas) e um baixo niimero de epochs frente as outras redes, o que leva a uma
menor chance de overfitting.

Apesar de ndo serem satisfatérios o suficiente para uma aplicacdo pratica no
reconhecimento de emocodes, os resultados obtidos neste trabalho podem ser comparados aos
resultados obtidos por Nordén (2019) de 61.1% na acuracia maxima com o uso de redes
neurais nao convolucionais. Alerh disso estes resultados evidenciam pontos interessantes com
relacdo a influéncia do conjunto de dados e hiperparametros utilizados ao se trabalhar com
redes neurais, também mostra uma clara evolucdao na capacidade do aprendizado das mesmas
quando considerados os hiperparametros compativeis com a arquitetura utilizada. Redes
neurais convolucionais apresentam resultados muito superiores, como os apresentados por
Khaireddin (2021) de 73.28% de acuracia sobre o conjunto de dados de teste da base FER-
2013.

A importancia de aplicacbes como a abordada neste trabalho é evidenciada pelos
sistemas de reconhecimento de emocdes em desenvolvimento na atualidade, com finalidades
diversas. Alguns estdo sendo implementados em carros autdbnomos para garantir a seguranga
dos motoristas (Jain, 2021), outros estdao sendo aplicados de maneiras coercivas em cidadaos
chineses (Wakefield, 2021 e Standaert, 2021).

Tais implementacOes levam a discussdes cada vez mais complexas sobre o uso correto
da inteligéncia artificial e apenas reforcam a importancia da interagdo crescente entre pessoas
e maquinas. Sendo o reconhecimento de emocgOes apenas um dos usos da inteligéncia
artificial como ferramenta para, esperancosamente, possibilitar um futuro benéfico para a

humanidade.
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