
UNIVERSIDADE DE SÃO PAULO

ESCOLA DE ENGENHARIA DE SÃO CARLOS

LEANDRO DE JESUS FRUTUOSO

Reconhecimento de emoções através de Redes Neurais

São Carlos

2021

LEANDRO DE JESUS FRUTUOSO

Reconhecimento de emoções através de Redes Neurais

Monografia apresentada ao Curso de

Engenharia Mecânica, da Escola de

Engenharia de São Carlos da Universidade de

São Paulo, como parte dos requisitos para

obtenção do título de Engenheiro Mecânico.

Orientadora: Profa. Dra. Maíra Martins da

Silva

VERSÃO ORIGINAL

São Carlos

2021

AGRADECIMENTOS

À minha família. Meus pais, Viviane e Marcelo, meu irmão, Lucas, por todo o suporte

e amor dado ao longo de toda minha vida.

À Cynthia, por todos os momentos de ajuda, amor e companheirismo.

Aos meus amigos, por tornarem minha vida mais feliz e sempre estenderem a mão em

momentos difíceis.

À profa. Maíra, por me encorajar, orientar e auxiliar neste trabalho.

RESUMO

FRUTUOSO, L. J. Reconhecimento de emoções através de Redes Neurais. 2021. 64 f.

Monografia (Trabalho de Conclusão de Curso) - Escola de Engenharia de São Carlos,

Universidade de São Paulo, São Carlos, 2021.

O uso da inteligência artificial é amplamente difundido nas mais diversas aplicações

tecnológicas atuais. Numa sociedade onde a interação entre os seres humanos e as máquinas

ocorre de maneira cada vez mais profunda, o entendimento de características humanas se

torna fundamental para as máquinas. A fim de tornar mais eficaz esta interação, o

reconhecimento de emoções pode ser visto como um dos pilares que constitui as informações

necessárias para avaliar o estado mental de uma pessoa. O presente trabalho tem por objetivo

treinar uma rede neural capaz de identificar emoções humanas, utilizando como base de

dados o conjunto de imagens FER-2013. Na revisão bibliográfica são abordados conceitos

históricos sobre o surgimento das redes neurais, sua estrutura, seu funcionamento e

problemas comuns. Para a obtenção dos dados utilizados neste trabalho foram treinadas 66

redes, com hiperparâmetros que se demonstraram promissores, por evidência empírica ou por

resultados de outros autores. Os conceitos apresentados foram então utilizados no

embasamento dos resultados e na escolha da melhor rede dentre todas as treinadas, que

apresentou 47.17% de acurácia média no conjunto de testes. Apesar de não ser uma acurácia

satisfatória para aplicações práticas, ela foi obtida através de ajustes dos hiperparâmetros

demonstrando, claramente, a influência deles sobre a performance das redes neurais.

Palavras chave: Inteligência Artificial, Redes Neurais, Reconhecimento de emoções.

ABSTRACT

FRUTUOSO, L. J. Emotion recognition through the use of Neural Networks. 2021. 64 f.

Monografia (Trabalho de Conclusão de Curso) - Escola de Engenharia de São Carlos,

Universidade de São Paulo, São Carlos, 2021.

The use of artificial intelligence is widespread in the most diverse technological

applications nowadays. In a society where the interaction between human beings and

machines occurs in increasingly deep ways, the comprehension of human characteristics

becomes key for the machines. In order to make this interaction more efficient, emotion

recognition can be seen as one of the cornerstones that compose the necessary information for

evaluating the mental state of a person. This work has the objective of training a neural

network capable of identifying human emotions, using as the basis the dataset of images

FER-2013. In the literature review, concepts of the history about the arise of the neural

networks, their structure, how they work and commun problems revolving the subject are

approached. To obtain the data used in this work 66 nets were trained with hyperparameters

that appeared to be promising, by empirical evidence or by results of other authors. Then, the

concepts presented were used in the foundation about the explanation of the results and in the

process of choosing the best net among all the trained ones, which showed an average

accuracy of 47.17% in the test dataset. Even though it’s not a satisfactory accuracy for

practical application, it was obtained through the tunning of the hyperparameters showing,

clearly, their influence on the performance of the neural nets.

Keywords: Artificial Intelligence, Neural Networks, Emotion Recognition.

LISTA DE ILUSTRAÇÕES

Figura 1 - Taxas de erro dos vencedores do desafio ImageNet entre 2010 e 2017................6
Figura 2 - Diagrama dos campos de estudo abordados...9
Figura 3 - Estrutura de um perceptron com 3 entradas..10
Figura 4 - Estrutura de uma rede neural completamente conectada....................................12
Figura 5 - Sigmoid vs Step Function...13
Figura 6 - Configuração esquemática de feedforward para um neurônio.............................14
Figura 7 - Representação da derivada parcial do custo em relação a19
Figura 8- Feedforward em uma camada dividida em dense layer e activation layer.............19
Figura 9 - Representação do feedforward e backpropagation em uma camada subdividida.
... 20
Figura 10 - Representação da Dense Layer...20
Figura 11 - Representação da Activation Layer..24
Figura 12 - Não convergência por um learning rate com valor alto.......................................28
Figura 13 - Convergência com learning rate menor..28
Figura 14 - Representação de uma convergência otimizada..29
Figura 15 - Exemplos de emoções da base de dados..35
Figura 16 - Gráfico test accuracy vs epochs 1ª Rede, primeira leva.....................................41
Figura 17 - Gráfico test accuracy vs epochs 2ª Rede, primeira leva.....................................42
Figura 18 - Gráfico test accuracy vs epochs 3ª Rede, primeira leva.....................................42
Figura 19 - Gráfico test accuracy vs epochs 1ª Rede, segunda leva....................................44
Figura 20 - Gráfico test accuracy vs epochs 2ª Rede, segunda leva....................................45
Figura 21 - Gráfico test accuracy vs epochs 3ª Rede, segunda leva....................................45
Figura 22 - Gráfico training cost vs epochs 1ª Rede, primeira leva......................................47
Figura 23 - Gráfico training cost vs epochs 2ª Rede, primeira leva......................................47
Figura 24 - Gráfico training cost vs epochs 2ª Rede, segunda leva......................................48
Figura 25 - Gráfico test accuracy vs epochs 1ª Rede, segunda leva, mini batch size 16......49
Figura 26 - Gráfico test accuracy vs epochs 1ª Rede, segunda leva, mini batch size 32......49
Figura 27 - Gráfico test accuracy vs epochs 1ª Rede, segunda leva, mini batch size 64......50
Figura 28 - Gráfico training accuracy vs epochs 1ª Rede, segunda leva..............................51
Figura 29 - Gráfico training accuracy vs epochs 2ª Rede, segunda leva..............................51

LISTA DE TABELAS

Tabela 1 - Quantidade de imagens por emoção no conjunto de Treino...............................34
Tabela 2 - Quantidade de imagens por emoção no conjunto de Teste.................................35
Tabela 3 - Emoções e seus respectivos valores de encoding..36
Tabela 4 - Hiperparâmetros testados...37
Tabela 5 - Hiperparâmetros refinados..38
Tabela 6 - Hiperparâmetros primeira rede de treino...39
Tabela 7 - Hiperparâmetros das 30 redes treinadas na primeira leva..................................40
Tabela 8 - Hiperparâmetros 3 redes com maior acurácia média da primeira leva................40
Tabela 9 - Média e desvio padrão das 3 redes com maior acurácia média da primeira leva.
... 42
Tabela 10 - Hiperparâmetros das 3 redes com maior acurácia média na segunda leva.......43
Tabela 11 - Média e desvio padrão das 3 redes com maior acurácia média da segunda leva.
... 43

LISTA DE ABREVIATURAS E SIGLAS

IA Inteligência Artificial

ML Machine Learning

NN Neural Network

EQM Erro quadrático médio.

CNN Convolutional Neural Network

SUMÁRIO

1 INTRODUÇÃO 5

1.1 Apresentação do tema 5

1.2 Objetivos 7

2 REVISÃO BIBLIOGRÁFICA 8

2.1 Emoções 8

2.2 Imagens 8

2.3 Inteligência Artificial, Machine Learning, Neural Networks e Deep Learning 9

2.4 Tipos de aprendizado 10

2.5 Estrutura das Redes Neurais 10

2.6 Funcionamento das Redes Neurais 12

2.6.1 Passagem de informação: forward propagation ou feedforward 12

2.6.2 Função de custo, perda ou objetiva 14

2.6.3 Gradient descent. 15

2.6.4 Convenções adotadas 17

2.6.5 Backpropagation 19

2.7 Hiperparâmetros, otimizações e boas práticas 27

2.7.1 Learning rate 28

2.7.2 Epochs 30

2.7.3 Stochastic gradient descent e mini batch size 30

2.7.4 Valores iniciais dos parâmetros de aprendizado 30

2.7.5 Número de neurônios e camadas 31

2.8 Problemas comuns das redes neurais 31

2.8.1 Saturação do neurônio 31

2.8.2 Overfitting e underfitting 33

2.8.3 Vanishing Gradient 33

2.9 Categorical Encoding 33

3 METODOLOGIA 35

3.1 Base de dados 35

3.2 Linguagem e Ambiente de execução utilizados 36

3.3 Código utilizado 36

3.4 Tratamento dos dados 36

3.4.1 Encoding dos dados 36

3.4.2 Balanceamento dos dados 37

3.5 Treinamento das redes 37

3.5.1 Parâmetros iniciais 37

3.5.2 Teste dos parâmetros 38

3.5.3 Refinamento dos parâmetros 38

3.5.4 Avaliação de performance 39

4 RESULTADOS 40

4.1 Redes iniciais 40

4.2 Busca por parâmetros 40

4.2.1 Primeira leva de treinamento 40

4.2.1 Segunda leva de treinamento 44

4.3 Análise dos hiperparâmetros com melhor performance 46

4.3.1 Learning rate 46

4.3.2 Mini batch size 49

4.3.3 Epochs e overfitting 51

5 CONCLUSÃO 53

6 REFERÊNCIAS 54

5

1 INTRODUÇÃO

1.1 Apresentação do tema

A visão é uma ferramenta evolutiva adquirida, ao longo de milhões de anos, pela

maioria das espécies de animais que habitam o planeta. Dentre os sistemas sensoriais, a visão

é, sem dúvida, um dos sentidos mais importantes para que o animal possa sobreviver no meio

em que habita. Isso ocorre porque suas chances de sobrevivência estão diretamente atreladas

à quantidade de informações que ele consegue absorver e interpretar sobre o ambiente

(JONES, 2014).

Apesar da sobrevivência humana frente às ameaças naturais do ambiente ser um desafio

passado, a informação obtida pelos sistemas sensoriais ainda possui extrema relevância e não

apenas para nós. As máquinas necessitam extrair e interpretar informações sobre o ambiente

de maneiras cada vez mais sofisticadas para realizarem tarefas cada vez mais complexas. Para

tal, o campo de estudo da visão computacional é essencial.

Visão computacional pode ser definida como um campo científico que extrai

informações de imagens digitais (MOINDROT, 2018). Os recentes estudos nesse campo

possibilitaram a construção de diversas aplicações como, por exemplo, sistemas de

reconhecimento facial, análise médica de imagens, carros autônomos etc.

Essas aplicações só se tornaram factíveis através do uso da Inteligência Artificial.

Que, de acordo com o próprio criador do termo, é definida como: “A ciência e engenharia de

produzir máquinas inteligentes, especialmente, programas inteligentes. Ela está relacionada

com a tarefa similar de usar computadores para entender a inteligência humana, porém a

Inteligência Artificial não precisa se confinar a métodos que são biologicamente

observáveis.” (MCCARTHY, 2004).

Os campos da Inteligência Artificial e Visão Computacional existem desde os anos

1950 e 1960, respectivamente (MOINDROT, 2018 e ANYOHA, 2017). A Inteligência

Artificial avançou de forma significativa entre 1957 e 1974, juntamente com os avanços

tecnológicos na capacidade de processamento e de memória dos computadores. Após esse

período, os avanços não atingiram as expectativas até 1997, quando a inteligência artificial

Deep Blue da IBM derrotou o campeão mundial de xadrez Gary Kasparov (ANYOHA,

2017).

6

A técnica mais popular da atualidade utilizada no reconhecimento de imagens, deep

learning, surgiu na década de 1980, quando o termo foi introduzido por Rina Dechter

(DECHTER, 1986). Porém, uma barreira limitou o avanço desse campo de estudo, a falta de

imagens disponíveis e devidamente classificadas para se trabalhar com as redes neurais.

Foi apenas entre 2009 e 2010 que ocorreu o marco divisor de águas no campo da

visão computacional. Com o avanço e popularização de aparelhos como smartphones e

câmeras digitais, o projeto ImageNet (FEI-FEI et al, 2009) atacou o problema da falta de

dados para o campo de estudo. Classificando e disponibilizando, em 2010, mais de 10

milhões de imagens contendo mais de 10 mil classes diferentes de objetos.

O projeto consiste não apenas na classificação destes dados, mas também em um

desafio onde os participantes criam algoritmos com o objetivo de classificar automaticamente

as imagens. Um fato relevante ocorreu em 2012 com o artigo publicado por Alex Krizhevsky

que abordou o desafio ImageNet utilizando redes neurais convolucionais (KRIZHEVSKY et

al, 2012), que se mostrou uma abordagem muito mais promissora comparada às anteriores e

se tornou a mais utilizada até o presente momento. Nota-se um grande avanço na área em um

curto espaço de tempo. Em 2010 a taxa de erro na classificação das imagens do algoritmo

vencedor do desafio era de 28% e em 2017 o erro foi menor que 3%, conforme mostra a

Figura 1.

Figura 1 - Taxas de erro dos vencedores do desafio ImageNet entre 2010 e
2017.

Fonte: (LANGLOTZ et al, 2018).

Fonte: Langlotz (2018)

7

Desde então houve uma popularização na utilização de técnicas de inteligência artificial,

não só no meio acadêmico, como também no meio industrial, financeiro, tecnológico e até

mesmo no âmbito pessoal com bibliotecas de uso livre, como Tensorflow e Keras produzidas

pelo Google LCC.

As pessoas estão se tornando cada vez mais dependentes destas aplicações, gerando

questões sobre como será um futuro não tão distante. Segundo Zuffo (2020), a relação do ser

humano com as máquinas pode se tornar até mesmo simbiótica, que de certa forma já é

realidade em algumas aplicações médicas como o marcapasso, por exemplo.

Num horizonte próximo, possivelmente, será dado um passo além. Tecnologias

poderão viabilizar a comunicação direta com as máquinas através da atividade cerebral, como

demonstrado na apresentação da Neuralink onde um macaco jogou o videogame Pong

utilizando um chip implantado diretamente no seu cérebro (WAKEFIELD, 2021).

Tendo uma proximidade tão grande com as máquinas, é importante ter em mente a

quantidade de informação que elas conseguirão obter sobre os seres humanos, incluindo suas

emoções.

1.2 Objetivos

 O objetivo deste trabalho é implementar um algoritmo de rede neural com aprendizado

profundo, para o reconhecimento de emoções humanas através de expressões faciais obtidas

por imagens classificadas em 5 emoções básicas: Neutralidade, tristeza, felicidade, medo e

raiva.

Esse objetivo será abordado através das seguintes etapas:

1 Implementação e treinamento de uma rede neural utilizando a base de dados

de imagens FER-2013 (KAGGLE, 2020).

2 Teste de acurácia através de experimentação com diferentes hiperparâmetros.

8

2 REVISÃO BIBLIOGRÁFICA

2.1 Emoções

Segundo Izard (2010), a comunidade científica ainda não possui um consenso para a

definição de emoção. Porém, uma descrição consiste em: “circuitos neurais dos sistemas de

resposta e um estado de sensações que motivam e organizam cognição e ação”.

De fato, refletir sobre a possível definição de emoção é uma tarefa com complexidade

intrínseca. Pensando apenas que as pessoas são muitas vezes incertas sobre suas próprias

emoções, poderiam elas classificar com clareza as emoções dos outros? E, mesmo assim,

muitas vezes elas reconhecem facilmente quando outras pessoas estão tristes, felizes,

assustadas etc. Como seria possível então tentar ensinar uma máquina a reconhecer emoções

humanas?

Ekman et al. (1971), definiu seis emoções básicas: felicidade, surpresa, nojo, medo,

raiva e tristeza. E propôs um método para reconhecê-las através das expressões faciais, o

Facial Affect Scoring Technique (FAST), onde ele propôs que as expressões faciais

correspondentes às emoções teriam componentes ou “itens” em comum.

A emoção de surpresa, por exemplo, teria componentes de expressões faciais como

sobrancelhas levantadas, olhos abertos, boca aberta etc. Em uma abordagem similar, a rede

neural será treinada com o intuito de reconhecer as emoções baseando-se nas expressões

faciais das imagens presentes na base de dados FER-2013 (KAGGLE, 2020).

9

2.2 Imagens

Para os computadores, imagens são matrizes constituídas por Pixels que possuem

valores de 0 a 255, representando sua intensidade. Uma imagem colorida do tipo RGB, por

exemplo, é um versor de rank 3. Pois, a imagem é representada por uma matriz onde seus

elementos possuem um valor de 0 a 255 para cada um de seus canais de cores básicas,

vermelho, verde e azul (EARNSHAW, 2017).

Imagens em escala de cinza possuem apenas um canal. Na análise de imagens cujas

cores não são um fator relevante, o uso da escala de cinza possui uma vantagem com relação

ao custo computacional, já que não é necessário processar valores de intensidade de 3 canais.

2.3 Inteligência Artificial, Machine Learning, Neural Networks e Deep Learning

“Na sua forma mais simples, IA (Inteligência Artificial) é um campo que combina

ciência da computação e robustos conjuntos de dados, possibilitando a solução de

problemas.” (IBM Cloud Education, 2020). Partindo dessa definição e da definição de

McCarthy (2004), o campo da IA engloba o campo de Machine Learning, sendo este o estudo

que fornece às máquinas a capacidade de aprender sem serem explicitamente programadas

para isso (SAMUEL, 1959).

Dentro do campo de ML (Machine Learning), existem diversas técnicas, como Naive

Bayes, K-Means, Support Vector Machines, Neural Networks, entre outras. As Redes

Neurais, ou Neural Networks, são portanto um subcampo de estudo de ML. E, por sua vez,

aprendizado profundo, ou deep learning, é um subcampo de estudo de Redes Neurais. Essas

relações são representadas no diagrama da Figura 2.

Figura 2 - Diagrama dos campos de estudo abordados.

Fonte: Autoria própria.

10

O paradigma comum a todas as técnicas de Machine Learning que tornam esses

campos de estudo tão interessantes é a inversão no fluxo dos algoritmos. Os algoritmos

comuns recebem um determinado input e são programados de maneira específica para

produzirem um output, já os algoritmos de Machine Learning tem especificados tanto seus

inputs quanto seus outputs e são programados de forma que possam automaticamente

produzir uma maneira de fornecer esses outputs. Com a esperança de que, futuramente, essa

maneira responda bem em um contexto generalizado.

2.4 Tipos de aprendizado

Segundo Delua (2021), existem duas abordagens básicas utilizadas no campo de

Machine Learning, o aprendizado supervisionado e o não supervisionado. O aprendizado

supervisionado é feito através de inputs e outputs já conhecidos, o não supervisionado se dá

pelo uso apenas de inputs e não fornece outputs conhecidos.

Para problemas de classificação e regressão são mais comuns os usos de aprendizagem

supervisionada, trabalhos com análise de sentimentos são geralmente abordados como

problemas de classificação. Problemas de agrupamento ou clustering utilizam aprendizado

não supervisionado, onde o principal objetivo é observar relações e padrões entre dados

disponíveis, como trabalhos de detecção de anomalias.

2.5 Estrutura das Redes Neurais

A unidade básica de uma Rede Neural conhecida como nó, neurônio, ou perceptron

surgiu a partir de uma estrutura desenvolvida por Frank Rosenblatt em 1957 (NIELSEN,

2015). Seu objetivo, na época, era explicar como a memória era armazenada em sistemas

biológicos, sendo o perceptron a unidade básica do seu “brain model”, que consistia em

unidades conectadas formando uma rede. Onde cada uma delas, ao receber um sinal de

entrada, responde gerando um sinal de saída que pode ser transmitido, através de conexões,

para um grupo seleto de unidades receptoras (ROSENBLATT, 1961).

11

Figura 3 - Estrutura de um perceptron com 3
entradas.

Fonte: Nielsen (2015).

O perceptron possui uma estrutura como a representada na Figura 3, este em

específico recebe 3 entradas. A saída gerada possui valores binários, 1 ou 0, a maneira que

Rosenblatt utilizou para computar essa saída foi através de pesos ou weights, números reais

que atribuem a importância das conexões. Generalizando para mais do que 3 entradas, o valor

de entrada no neurônio é dado pela soma do produto das saídas dos perceptrons da camada

anterior e seus respectivos pesos, se o valor obtido ultrapassar um limite estabelecido a saída

do perceptron é 1, sinalizando que ocorreu uma ativação, caso contrário, sua saída possui o

valor 0, indicando uma inativação.

Sendo x j e w j as saídas dos perceptrons da camada anterior e os pesos das conexões,

respectivamente. Temos que a saída de um perceptron é dada por:

(1)

A diferença crucial entre o perceptron, ou neurônio, das redes utilizadas atualmente está

no modo que é computada sua saída. Diferente dos perceptrons de Rosenblatt, que não

possuem níveis intermediários de ativação, os neurônios atuais possuem um valor de saída

sendo um número real entre 0 e 1. Essa característica proporciona uma propriedade

fundamental de que pequenas alterações nos pesos causam pequenas alterações nas saídas dos

neurônios. E, como será visto mais adiante, essa é a propriedade que torna possível o

aprendizado das redes.

Estruturalmente, as redes neurais consistem de camadas de neurônios, que nada mais são

do que números reais representando suas “ativações”, interligados por pesos, que também são

Fonte: Nielsen (2015)

12

números reais, cuja função é atribuir relevância entre as conexões. Uma Rede Neural possui

no mínimo 3 destas camadas, uma camada de entrada, uma camada intermediária

“escondida” chamada de hidden layer e uma camada de saída. As Redes Neurais Profundas

ou Deep Neural Networks são redes com mais de uma hidden layer. Essa estrutura pode ser

observada na Figura 4.

Figura 4 - Estrutura de uma rede neural completamente conectada.

Fonte: Nielsen (2015)

As Redes Neurais também podem ser completamente conectadas, onde a saída de cada

neurônio é uma das entradas de cada um dos neurônios da camada seguinte, ou podem ser

parcialmente conectadas, onde a afirmação anterior não é satisfeita. Neste trabalho serão

abordadas apenas as redes completamente conectadas ou fully connected networks.

2.6 Funcionamento das Redes Neurais

2.6.1 Passagem de informação: forward propagation ou feedforward

A propagação de informação nas redes tratadas neste trabalho se dá de maneira

sequencial de uma camada para a outra e é chamada de forward propagation ou feedforward,

essa ideia se mantém semelhante a técnica utilizada por Rosenblatt (1961) e se dá por duas

etapas.

● Entrada de informação no neurônio pela soma das saídas dos neurônios anteriores

multiplicadas pelos seus respectivos pesos, somado também um bias.

13

● Aplicação de uma função de ativação que resulta na saída do neurônio e será utilizada

para obter a entrada nos neurônios da camada subsequente.

Com exceção da camada de entrada que recebe os dados a serem analisados, todos os

neurônios dependem das saídas dos neurônios anteriores, essa relação se dá pela equação 2.

 input=b+∑
k

xk w k (2)

Pode ser visto que a equação 2 é praticamente análoga a equação de Rosenblatt (1961),

tendo como diferença apenas o fator do bias, sendo este mais um parâmetro ajustável para a

rede. O bias pode ser interpretado como um viés de ativação, quando o valor do bias é

bastante positivo há uma maior facilidade da ativação do seu neurônio, quando é negativo há

uma maior dificuldade desta ativação (NIELSEN, 2015).

Computada a entrada do neurônio, sua saída será dada aplicando uma função de

ativação. Diferentemente da saída proposta para o perceptron através de uma função degrau,

as funções de ativação são um grupo de funções que fornecem uma saída com valores

contínuos que possuem propriedades semelhantes a ela.

 σ (z)=
1

1+e−z (3)

A função sigmóide (Equação 3) é uma das mais comuns, quanto maior seu valor de

entrada mais ela se aproxima do valor unitário, e quanto menor o valor de entrada, seu

resultado se aproxima a zero, como pode ser observado na Figura 5.

14

Figura 5 - Sigmoid vs Step Function.

O aspecto fundamental da função sigmóide como já comentado antes é a propriedade de

assumir valores contínuos entre zero e um. Isso permitirá o uso do algoritmo de backward

propagation ou backpropagation, que será abordado posteriormente.

Um resumo esquemático do algoritmo de feedforward pode ser visto na Figura 6,

onde, após todo o processo descrito, a saída do neurônio será utilizada na entrada dos

neurônios da camada seguinte, por se tratar de uma rede completamente conectada.

Figura 6 - Configuração esquemática de feedforward para um neurônio.

2.6.2 Função de custo, perda ou objetiva

Em problemas de aprendizado supervisionado é possível calcular a diferença entre o

output fornecido pela rede e o seu valor esperado. Essa diferença é calculada através de uma

Fonte: Matthew (2020).

Fonte: Calebe (2019)

15

função vista na literatura como Loss Function, Cost Function ou Objective Function

(NIELSEN, 2015).

Uma delas é o erro quadrático médio (EQM), a quadratic cost function é dada pela

equação 4.

C (w , b)=
1

2n
∑

x

(y (x)−a)² (4)

Sendo w e b todos os pesos e biases da rede, respectivamente, n é o número de

amostras de treino, x é o input de uma única amostra, y (x) é o output esperado em relação ao

input x e a é o output fornecido pela rede. Note que a notação utilizada difere da figura 6,

agora o output do neurônio é dado pela variável a e y representa o output real que deveria ser

observado.

Outra função de custo também muito utilizada é a cross-entropy cost, dada pela

equação 5.

C (w ,b)=
−1
n

∑
x

[yln(a)+(1− y) ln(1−a)] (5)

Como y (x) é um valor já conhecido para cada input, o único valor que pode ser

alterado é a saída a fornecida pela rede, que é função dos pesos e biases. Então, o objetivo é

modificar estes dois parâmetros, chamados de parâmetros de aprendizado, de forma a

minimizar a função de custo. Para isso, é utilizado o método da descida do gradiente ou

gradient descent.

2.6.3 Gradient descent.

“O que queremos dizer quando falamos que uma rede está aprendendo é apenas que

ela está minimizando uma função de custo.” (SANDERSON, 2017).

Gradient descent é um método iterativo utilizado para minimizar funções de múltiplas

variáveis. Dado um ponto de ínicio da função, a cada iteração é calculado o seu gradiente

neste ponto, em seguida, o gradiente é multiplicado por um escalar negativo (chamado em

ML de learning rate) e então somado ao ponto inicial resultando dessa maneira em um novo

ponto, onde o processo será repetido. A equação 6 demonstra de maneira mais geral o

método.

16

 vn+1=vn−η∇ f (vn) (6)

Sendo f (v) uma função de múltiplas variáveis, v=v1 , v2 ,.. ..

Dois pontos importantes a se notar neste método, são:

● O gradiente dá a direção de maior variação na superfície f , um escalar

positivo resultaria em uma tendência de maximizar a função.

● Não há garantia de convergência para o mínimo global, apenas mínimos

locais.

O segundo ponto é o mais importante, pois ele está relacionado com o hiperparâmetro

learning rate na equação, dado por η . Enquanto não há o que possa ser feito com relação à

garantia de encontrar apenas mínimos locais, a escolha do learning rate afeta

consideravelmente os resultados da rede. Uma vez que um η grande pode tirar a convergência

de um mínimo local e levá-la a outro, torná-lo o menor possível é importante para evitar que

isso aconteça. Mas, ao torná-lo pequeno, serão necessárias mais iterações para a convergência

e, consequentemente, um maior custo computacional. Este e outros pontos de otimização e

boas práticas serão abordados posteriormente.

Então, aplicando gradient descent na função de custo, seus componentes serão dados

pelas equações 8 e 9.

 ∇ C=(
∂C
∂ w

,
∂C
∂b

) (7)

 wn+1=wn−η
∂C
∂wn

 (8)

 bm+1=bm−η
∂C
∂bm

(9)

17

Aplicar este método se mostrou uma tarefa extremamente desafiadora. Pois, é necessário

encontrar a derivada parcial da função de custo em relação a cada um dos pesos e cada um

dos biases. Sendo que as redes neurais de hoje chegam a ter facilmente milhões desses

parâmetros, acaba sendo inviável a abordagem de um cálculo analítico de cada uma dessas

derivadas individualmente e também muito custoso um processo numérico de aproximação

delas.

O algoritmo que solucionou este problema e que, segundo Nielsen (2015), é

responsável pelo avanço das redes neurais visto nos dias de hoje, só ganhou relevância após a

publicação de um paper em 1986 (RUMELHART, 1986), tal algoritmo é chamado de

backpropagation.

2.6.4 Convenções adotadas

Antes de abordar o tópico backpropagation serão definidas algumas convenções

adotadas por Nielsen (2015).

● O peso que conecta dois neurônios terá notação w jk
l onde jé o número do

neurônio da camada l e k é o número do neurônio da camada anterior (l−1).

● O bias de um neurônio é denotado por b j
l , sendo l a camada em que ele se

encontra e j o seu número nesta camada.

● A saída de um neurônio será denotada de forma similar ao bias, onde j

representa o número do neurônio na camada l, sendo representada então por a j
l

. A saída do neurônio também pode ser denominada como sua ativação.

Agora é possível generalizar a ativação de um neurônio pela equação 10.

 a j
l
=σ (∑k

w jk
l ak

l−1
+b j

l

) (10)

Sendo σ a função de ativação, a expressão ∑
k

w jk
l ak

l−1
+b j

l pode ser denominada pela

variável z j
l chamada de weighted input, tornando a equação 10 mais compacta.

 a j
l
=σ (z j

l) (11)

18

Nota-se que são equações repletas de índices, isso por estarem sendo considerados

neurônios individuais. Para que seja possível escrevê-las de forma matricial, serão definidas

duas representações adotadas e o produto de Hadamard.

● A aplicação de uma função em um vetor não é definida na matemática, mas

convenciona-se neste trabalho que uma função aplicada a um vetor nada mais

é que aplicar a função em cada um dos seus elementos.

● De maneira similar, a derivada de um vetor será dada pela derivada de cada

um dos seus elementos.

● O produto de Hadamard é menos usual, porém é definido na matemática como

o produto de elemento por elemento de uma matriz e é denotado pelo símbolo

s⊙ j sendo s e j matrizes de mesmas dimensões (NIELSEN, 2015;

MILLION, 2007).

De maneira mais elegante a equação 10 pode ser reescrita com a notação de vetores e

matrizes pela equação 12, considerando as convenções acima.

 Al
=σ (W l Al−1

+Bl
) (12)

Sendo, Al o vetor de ativações de j neurônios da camada l, W la matriz de dimensões

j × k com todos os pesos que conectam a camada l com sua antecessora l−1, Al−1 o vetor de

ativações de k neurônios da camada l−1e Blo vetor de bias dos j neurônios da camada l.

De maneira análoga à equação 12, podemos reescrever a equação 11, onde

Zl
=W l A+B l representa o vetor de weghted inputs da camada l.

 Al
=σ (Z l

) (13)

2.6.5 Backpropagation

Como visto anteriormente, a função degrau, utilizada por Rosenblatt (1961), não possuía

uma característica fundamental para a aplicação do método gradient descent, ela não é

contínua e, portanto, não é diferenciável.

O algoritmo de backpropagation é uma maneira inteligente de computar as derivadas

parciais da função de custo em relação aos parâmetros de aprendizado de uma rede (seus

weights e biases).

19

Observa-se que a ativação de uma camada é dependente de todas as camadas anteriores,

com exceção da camada de input dos dados. Sendo Al o vetor de ativações da última camada

de uma rede com input X , a aplicação sucessiva da equação 12 descreve a dependência entre

as camadas e é representada pela equação 14.

 A l
=σ (W l σ (W l−1 σ (...W 2 σ (W 1 X+B1

)+B2
)+Bl−1

)+Bl
) (14)

Dessa forma, nota-se que a saída de cada camada é uma função composta e, portanto,

para encontrar a derivada parcial da função de custo em relação a um peso específico é

necessário aplicar a regra da cadeia, como demonstrado na equação 15 e ilustrado na figura 7.

∂C

∂ w jk
l = ∑

mnp ...q

∂C

∂am
L

∂am
L

∂ an
L−1

∂an
L−1

∂a p
L−2 ...

∂aq
l+1

∂ a j
l

∂a j
l

∂w jk
l

(15)

Figura 7 - Representação da derivada parcial do custo em relação a w jk
l .

Não é necessário esforço para demonstrar o motivo das redes neurais dependerem de um

algoritmo que simplifique este processo. Baseado na mesma abordagem da passagem de

informação do feedforward, a ideia do backpropagation consiste em propagar o valor das

derivadas necessárias e, posteriormente, a descida do gradiente partindo da última camada

para a primeira, computando o seu efeito em cada uma delas.

A adaptação de uma abordagem proposta por Aflak (2018), similar a de Nielsen

(2015), permite visualizar seu funcionamento com mais clareza. Subdividindo uma camada

Fonte: Nielsen (2015).

20

qualquer l em duas, uma denominada de dense layer e outra de activation layer o fluxo de

informação no feedforward pode ser representado na figura 8.

Figura 8- Feedforward em uma camada l dividida em dense layer e activation layer.

Sendo a dense layer a camada cuja entrada é o vetor de ativação de k neurônios de Al−1

que se ligam a j neurônios da camada Al , sua saída é Zl, o vetor de weighted inputs. E

activation layer a camada que apenas aplica a função de ativação em todos os elementos do

vetor Zl resultando na saída Al.

Figura 9 - Representação do feedforward e backpropagation em uma camada l subdividida.

De maneira análoga, o backpropagation é representado no fluxo da figura 9, pelas setas

localizadas na sua parte inferior e, a partir da análise de ambas as camadas, serão

apresentadas as 4 equações necessárias para sua aplicação.

Fonte: Adaptado de Aflak (2018).

Fonte: Adaptado de Aflak (2018).

21

● Dense Layer

Figura 10 - Representação da Dense Layer

Foram retirados os índices da camada para fins de simplificação na notação, uma vez

que a camada é arbitrária. O vetor Z é dado pela equação 16.

(16)

A equação 16 pode ser reescrita de forma matricial, como mostra a equação 17.

(17)

Dado um peso qualquer w cd, a derivada parcial do custo C em relação a w cd é dada

pela equação 18.

Fonte: Adaptado de Aflak (2018).

22

(18)

O único z cuja derivada parcial da equação 18 não é zero é o zc correspondente ao peso

w cd, pois esse é o único elemento de Z que depende de w cd e o valor desta derivada é a

ativação correspondente ad. Então, simplificando, a derivada parcial do custo em relação a

qualquer peso é dada pela equação 19.

(19)

Representando todas as derivadas parciais do custo em relação a todos os pesos em

uma matriz pela equação 20, e reescrevendo-a em forma de um produto matricial, chega-se à

primeira das quatro equações fundamentais para o método, a equação 21.

(20)

(21)

Partindo da equação 17, de maneira análoga à derivada parcial do custo em relação aos

pesos, é possível obter a derivada parcial do custo em relação aos biases, representada pela

equação 22.

23

(22)

Assim como os pesos, a única derivada parcial que não é zero é a de zc correspondente

ao bias bc, e essa por sua vez é igual a 1, já que não há nenhum fator que o multiplica. Então,

obtém-se a equação 23, a segunda equação necessária.

(23)

 Foram obtidas as matrizes com as derivadas parciais necessárias para atualizar os

parâmetros de aprendizado no método da descida do gradiente. A dense layer ainda fornecerá

a terceira equação necessária para o backpropagation, a derivada do custo em relação às

entradas, representada pela equação 24.

(24)

24

Trabalhando com a derivada parcial do custo em relação uma entrada arbitrária ac,

pela equação 25.

(25)

Todos os termos da equação 25 são diferentes de zero, pois o fator ac está presente em

todos os elementos do vetor Z, e a derivada parcial de qualquer zd em relação a ac é o peso

wdc que conecta o neurônio c da camada anterior ao neurônio d da camada atual, resultando

na equação 26.

(26)

O vetor
∂ C
∂ A

 pode ser escrito como o produto entre a transposta dos pesos e o vetor de

derivadas parciais do custo em relação aos weighted inputs, obtendo a equação 27, a terceira

das quatro necessárias.

(27)

25

A quarta e última equação necessária para o backpropagation será obtida pela análise

da activation layer.

● Activation Layer

Figura 11 - Representação da Activation Layer.

Na camada de ativação, não há parâmetros de aprendizado para atualizar, ela apenas

aplica a função de ativação em todos os weighted inputs que ela recebe da dense layer

resultando na saída que será utilizada como entrada pela próxima dense layer. Então resta

apenas uma relação necessária a ser encontrada, a derivada parcial dos weighted inputs em

relação ao custo na camada de ativação.

Agora Z é o vetor de entradas da camada de ativação, a derivada parcial de seus

elementos em função do custo pode ser representada pela equação 28.

(28)

Fonte: Adaptado de Aflak (2018).

26

Esse vetor pode ser representado pelo produto de Hadamard e as ativações estão

relacionadas aos weighted inputs pela equação 11, por a=σ (z). Resultando na equação 29, a

quarta e última equação necessária.

(29)

Em resumo, todas as equações utilizadas na dense layer dependem apenas das

derivadas parciais representadas pelo vetor
∂C
∂ Z

, obtidos os seus valores é possível

implementar computacionalmente o cálculo da derivada parcial do custo em relação a todos

os pesos e biases de maneira simples, através das igualdades
∂C
∂W

=
∂C
∂ Z

AT e
∂C
∂ B

=
∂ C
∂Z

 , das

equações 21 e 23, respectivamente. Essas duas equações, são as únicas necessárias para

atualizar os pesos e biases na aplicação da descida do gradiente.

As outras duas equações apresentadas são as que dão continuidade ao ciclo. Uma vez

obtida a derivada parcial do custo em relação aos weighted inputs
∂C
∂ Z

 da dense layer poderá

ser obtida a derivada parcial do custo em relação às ativações de entrada da dense layer,

∂ C
∂ A

=W T ∂ C
∂ Z

 (Equação 27), ela será equivalente a derivada parcial do custo em relação às

ativações de saída da activation layer da camada anterior. Obtida a derivada parcial do custo

em relação às ativações da saída,
∂ C
∂ A

, da activation layer é possível obter
∂C
∂ Z

=
∂ C
∂ A

⊙σ ´ (Z)

(Equação 29), que nada mais é do que a derivada parcial do custo em relação aos weighted

inputs para a dense layer, seguindo para as demais camadas de maneira sucessiva.

Então, da mesma maneira que estabelecidos os pesos e biases iniciais, basta fornecer

27

o input para que ocorra a etapa de propagação de informação da primeira para última camada,

ou feedforward, basta fornecer na última camada o valor da derivada da função de ativação

em relação aos weighted inputs do vetor Z , σ ´ (Z), e a derivada da função de custo em

relação às ativações
∂ C
∂ A

, para que ocorra a etapa de backpropagation.

Fornecidos esses valores da última camada, essas 4 equações são aplicadas de forma

sucessiva até a primeira camada. Em seguida é realizado método da descida do gradiente, em

todos os elementos da matriz de pesos e da matriz de biases, camada por camada, como

representado pelas equações 30 e 31, respectivamente, que nada mais são do que a

representação matricial das equações 8 e 9.

 W n+1=W n−η
∂C

∂W n
(30)

 Bm+1=Bm−η
∂C
∂ Bm

(31)

Ao realizar esse processo a função de custo tenderá à um mínimo local, e os

parâmetros de aprendizado serão ajustados para obter um maior número de outputs Al que

coincidam com o output esperado Y (X), para todas as entradas X fornecidas na base de

dados de treino da rede. O número de vezes que isso deve ser repetido (epochs), o valor do

learning rate, os valores iniciais dos parâmetros de aprendizado serão abordados a seguir.

2.7 Hiperparâmetros, otimizações e boas práticas

O intuito de treinar uma rede neural é que ela obtenha sozinha seus parâmetros de

aprendizado que permitam fornecer os outputs desejados. Porém, os parâmetros como

learning rate, número de epochs, mini batch size, valores iniciais dos parâmetros de

aprendizado, número de neurônios ou número de camadas, são parâmetros estabelecidos

manualmente na implementação da rede neural e são denominados como hiperparâmetros.

Eles serão abordados um a um com suas possíveis otimizações e boas práticas.

2.7.1 Learning rate

O learning rate representado nas equações anteriores por η é o escalar que altera o

tamanho da variação dos parâmetros de aprendizado para cada iteração do gradient descent.

28

Como pode ser visto nas equações 30 e 31, cada peso e cada bias será subtraído pela derivada

parcial do custo em relação a ele multiplicada por η, o que torna tentador atribuir valores

altos a esse escalar, dessa maneira aumentando a velocidade com que se chega no mínimo

local.

Porém, ao fazer isso, provavelmente não haverá convergência para um mínimo local.

A função de custo pode acabar sendo levada para outros mínimos locais sem conseguir

permanecer em algum deles e, mesmo que consiga, ela possivelmente não apresentará

convergência dentro deste mínimo local. Ela ficará oscilando ao se aproximar do mínimo,

como pode ser representado visualmente na figura 12.

Figura 12 - Não convergência por um learning rate
com valor alto

Para que isso seja evitado pode-se adotar um valor pequeno para este parâmetro,

porém a convergência se dará de maneira muito mais lenta, principalmente se a função a ser

minimizada possuir milhões de variáveis, como pode ser representado na figura 13.

Fonte: https://bit.ly/3i5zAN8

29

Figura 13 - Convergência com learning rate menor.

Segundo Yan-Tak (2018), uma abordagem comum é adotar η=0.01/n, sendo n o

número de amostras de treino utilizadas, como um valor inicial e ir realizando ajustes finos

através de testes. O objetivo é obter um valor que cause uma convergência rápida e para um

intervalo de valores razoável, que varia de aplicação para aplicação, uma convergência ideal

pode ser representada pela figura 14.

Figura 14 - Representação de uma convergência
otimizada.

Fonte: https://bit.ly/3i5zAN8

Fonte: https://bit.ly/3i5zAN8

30

2.7.2 Epochs

Epochs, ou épocas de treino, é apenas o número predeterminado de vezes que o ciclo

feedforward e backpropagation será repetido para os inputs de treino fornecidos. O número

de épocas necessárias varia bastante e esta quantidade está atrelada a um dos maiores

problemas das redes neurais, o overfitting, que será abordado posteriormente.

2.7.3 Stochastic gradient descent e mini batch size

Quando se aplicam os métodos de backpropagation e gradient descent, o mais usual é

determinar o learning rate como um escalar arbitrário α , com valor inicial de 0.01, dividido

pelo número n de amostras da base de dados de treino que será utilizado pela rede para

atualizar os parâmetros de aprendizado, como pode ser observado pela equação 32.

 η=
α
n

(32)

Idealmente, a cada epoch, o gradient descent é aplicado em todas as amostras do

conjunto de treino. Porém, isso pode tornar o treino da rede substancialmente mais lento, para

contornar este problema é utilizado um método denominado stochastic gradient descent. Ele

consiste em organizar o conjunto de dados de treino aleatoriamente e, em seguida, dividi-lo

em mini batches com um número arbitrário de amostras com tamanho denominado de mini

batch size.

Então, é aplicado o método gradient descent sobre essa amostra consideravelmente

menor, o que traz ganhos de tempo e custo computacional. Segundo Bottou (2012), a

convergência deste método é quase sempre garantida em condições moderadas e seu valor

médio é aproximadamente igual ao valor médio obtido utilizando-se todas as amostras

disponíveis.

Segundo Bengio (2012), são usualmente utilizados valores de mini batch size sendo

potências de 2 partindo de 32 até 512. No paper de Keskar et al (2017), os pesquisadores

observam indícios de que mini batches maiores degradam a qualidade do modelo em questão

de capacidade de generalização.

2.7.4 Valores iniciais dos parâmetros de aprendizado

Segundo Nielsen (2015), uma abordagem comum é inicializar uma rede com pesos

aleatórios e biases com valor zero. Uma vez que a derivada parcial do custo em relação aos

31

biases é dependente apenas da derivada parcial do custo em relação aos weighted inputs,

zerar seus valores iniciais ainda permitirá sua atualização normalmente. Isso já se torna

inviável para os pesos, se seu valor inicial for zero, todas as ativações serão zero e a rede não

terá a capacidade de aprender.

Porém, há maneiras melhores de iniciar os pesos do que apenas atribuir valores

aleatórios sem análise prévia. Um bom método para inicializá-los é atribuir a eles valores de

uma distribuição normal com média 0 e desvio padrão 1/√n, por conta da saturação do

neurônio, que será abordada posteriormente. Mas, a ideia é que pesos mais concentrados em

um intervalo de valores auxiliam no aprendizado da rede.

2.7.5 Número de neurônios e camadas

A quantidade de parâmetros de aprendizado é definida pelo número de camadas e

neurônios em cada uma delas. Quanto mais parâmetros de aprendizado uma rede possuir,

mais ela conseguirá “se moldar” aos dados do conjunto de treino. Mas, não necessariamente,

isso é benéfico por conta de um fenômeno denominado como overfitting que, essencialmente,

prejudica a capacidade da rede de generalização.

Segundo Brownlee (2018), não há uma heurística para o número de neurônios que

devem existir em cada camada ou o número de camadas que devem constituir a rede,

pesquisar por papers sobre problemas similares pode ser um bom ponto de partida para

atribuir o número inicial de neurônios e camadas na arquitetura utilizada.

As redes deste trabalho terão no máximo duas camadas, por conta de um problema

denominado vanishing gradient que está relacionado às funções de ativação e será abordado

posteriormente.

2.8 Problemas comuns das redes neurais

2.8.1 Saturação do neurônio

Ao iniciar o treino de uma rede neural atribuindo aos pesos valores aleatórios, muito

provavelmente os neurônios da camada de saída da rede fornecerão valores distantes dos

valores esperados, o que é esperado. Porém, caso algum neurônio de saída tenha valores

muito próximos a 1 ou a 0, sendo sua função de ativação a sigmóide e sua função de custo o

EQM, ocorrerá um fenômeno denominado de saturação do neurônio.

32

Esse fenômeno ocorre por conta da derivação da sigmóide na etapa de backpropagation,

dada pela equação 33, onde pode-se observar que se z for grande o suficiente para que σ (z)

se aproxime de 1, o valor da derivada se aproximará de zero. E caso z seja pequeno o

suficiente para que σ (z) se aproxime de zero, o valor da derivada sofrerá o mesmo efeito.

 σ ´ (z)=σ (z)(1−σ (z)) (33)

Com a função de custo EQM, a derivada parcial do custo em relação a um peso é

dependente da derivada da sigmóide, como pode ser visto pela equação 34. Dessa forma, se

σ ´ (z) for próximo de zero, a taxa de aprendizado dos pesos atrelados a este neurônio será

próxima de zero tornando-os irrelevantes para o aprendizado da rede. Isso causa uma lentidão

no aprendizado ou learning slowdown.

∂C
∂ w

=(a− y)σ ´ (z)x (34)

Para contornar essa limitação, a função de custo mais utilizada, dado que a função de

ativação é a sigmóide, é a cross-entropy cost (equação 5). Pois, sua derivada em relação aos

pesos, equação 35, não depende da derivada da sigmóide.

∂C
∂ w j

=
1
n
∑

x

x j(σ (z)− y) (35)

Ao escolher essa função de custo, o problema é resolvido para a saturação dos neurônios

da camada de saída, porém, esse mesmo problema pode ocorrer nas hidden layers. Se o

weighted input z de qualquer neurônio for um valor que torne a derivada da sigmóide

próxima de zero os pesos atrelados a esse neurônio sofreram o mesmo learning slowdown.

Infelizmente para esse problema nas hidden layers a alteração da função de custo para cross-

entropy cost não causa nenhum efeito, já que inevitavelmente será utilizada a derivada da

sigmóide na etapa de backpropagation.

Uma maneira de tentar suprimir esse problema é na inicialização dos pesos e como

descrito anteriormente, um bom método para fazer isso é iniciá-los como valores de uma

distribuição normal com média 0 e desvio padrão 1/√n. Se os pesos iniciais tomarem valores

suficientemente maiores que 1 ou menores que -1, haverá um fator multiplicativo nas suas

conexões, que pode causar um weighted input resultante grande o suficiente (tanto positivo

quanto negativo) para saturar o neurônio. Tornar os pesos iniciais mais concentrados em

33

torno da média 0 auxilia diminuindo a quantidade de neurônios em que isso ocorre

(NIELSEN, 2015).

2.8.2 Overfitting e underfitting

Quando a rede neural continua a melhorar sua acurácia no conjunto de dados de

treino, mas não apresenta melhorias de acurácia no conjunto de dados de teste, ela está

adaptando seus parâmetros para obter especificamente os outputs esperados do seu conjunto

de treino, o que causa um grande problema. Se a rede se especializar em encontrar os outputs

esperados, não desempenhará bem de forma generalizada em dados desconhecidos, isso é

denominado overfitting.

Por isso ele é o fenômeno dominante na escolha do número de epochs ou épocas de

treino, assim que não houver mais uma melhoria na acurácia dos dados de teste é

recomendável parar o treinamento da rede. Pois, dali em diante a rede apenas aprenderá

peculiaridades do seu conjunto de dados de treino, este método é conhecido como early

stopping.

Underfitting é exatamente o contrário, parar o treino de uma rede sem que ela alcance

o máximo de acurácia no conjunto de testes prejudicará seu desempenho em novos dados,

uma vez que ela ainda poderia aprender mais sem perder sua generalização (NIELSEN,

2015).

2.8.3 Vanishing Gradient

Em uma das etapas de execução do backpropagation ocorre uma multiplicação pela

derivada da sigmóide para cada uma das camadas da rede. A função sigmóide possui valores

entre 0 e 1 e sua derivada também, como pode ser visto na equação 33. Este fato causará um

efeito de diminuição no gradiente a cada camada presente na rede, de maneira exponencial.

Sendo o gradiente cada vez menor, a atualização dos parâmetros de aprendizado se

tornará cada vez mais lenta. Portanto, é necessário tomar um grande cuidado com esse

problema, principalmente em redes neurais profundas com muitas camadas (NIELSEN,

2015).

34

2.9 Categorical Encoding

Como a rede neural utilizada neste trabalho utiliza aprendizado supervisionado (inputs e

outputs são fornecidos) e o problema abordado é um problema de classificação das emoções,

uma técnica denominada encoding precisa ser aplicada para viabilizar o treinamento da rede.

Encode significa “modificar informação de forma que possa ser processada por um

computador” (ENCODE, 2021). Categorical Encoding é apenas a representação de dados

categóricos por números ou vetores que serão utilizados pela rede no processo de

treinamento.

Uma variável categórica é uma variável cujos valores são representados por

classificações. A variável “cor”, por exemplo, pode assumir valores classificados como

“azul”, “verde” e “vermelho”. Essa variável pode ser representada pelo método de One Hot

Encoding como um vetor binário de 3 posições, onde cada um deles representa uma cor e

poderia ser visto como: Azul = [1,0 ,0], Verde = [0 ,1 , 0], Vermelho = [0 ,0 ,1]

(BROWNLEE, 2019).

Este método é particularmente útil em redes neurais, já que a camada de saída nada mais

é do que um vetor com valores entre 0 e 1, onde a posição de maior valor indicará a sua

categoria. Dessa forma, se a saída de uma rede treinada para detectar cores em um pixel

assumir o valor [0.89 ,0.13 , 0.06], ela indica que o pixel possui a cor azul, caso seja o valor

correto, significa que o output esperado é, de fato, o vetor [1, 0 , 0].

35

3 METODOLOGIA

3.1 Base de dados

Para o treinamento das redes neurais foi utilizada a base de dados FER-2013 (KAGGLE,

2020). Ela consiste em mais de 30 mil imagens em escala de cinza de 48x48 pixels divididas

em um conjunto de treino e um conjunto de teste, classificadas em 7 emoções: Raiva, nojo,

medo, felicidade, tristeza, surpresa e neutralidade. Distribuídas de acordo com as tabelas 1 e

2.

Tabela 1 - Quantidade de imagens por emoção no conjunto de Treino.

Emoção Quantidade de imagens

Raiva 3995

Nojo 436

Medo 4097

Felicidade 7215

Neutralidade 4965

Tristeza 4830

Surpresa 3171

Tabela 2 - Quantidade de imagens por emoção no conjunto de Teste.

Emoção Quantidade de imagens

Raiva 958

Nojo 111

Medo 1024

Felicidade 1774

Neutralidade 1233

Tristeza 1247

Surpresa 831

36

Figura 15 - Exemplos de emoções da base de dados.

3.2 Linguagem e Ambiente de execução utilizados

As primeiras redes foram treinadas utilizando Python 3.7.1 no Google Collaboratory,

que é um ambiente de execução em nuvem fornecido pelo Google Research. Nele, é possível

executar códigos em Python tendo acesso a uma máquina com 12GB de memória RAM e

100GB de disco que executa código por até 12h ininterruptas, de forma gratuita.

Após determinados parâmetros com melhor performance dentre as redes treinadas,

foram treinadas 66 redes em um notebook dell vostro 5470 com 8GB de RAM, com

hiperparâmetros próximos a estes pré-determinados para fins de comparação e validação de

uma rede ótima entre elas.

3.3 Código utilizado

O código utilizado foi adaptado do código de Dobrzanski (2016), que é uma versão

atualizada para Python 3 do já disponível no livro e GitHub de Nielsen (2015) feito em

Python 2.7.

Foram utilizadas também bibliotecas como, numpy, matplotlib e pandas para auxiliar no

tratamento e análise dos dados.

Fonte: (KAGGLE, 2020).

37

3.4 Tratamento dos dados

3.4.1 Encoding dos dados

Como cada imagem do dataset possui dimensões de 48x48 pixels, seus valores foram

todos normalizados, dividindo-os por 255 (máximo de intensidade possível de um pixel). Em

seguida elas foram transformadas em vetores de uma coluna e 48x48 = 2304 posições, sendo

eles as entradas na camada de input da rede.

Foi realizado um categorical encoding na classificação das emoções, a cada uma das 5

emoções foi atribuído um número de 0 a 4 , sendo representados pela tabela 3.

Tabela 3 - Emoções e seus respectivos valores de encoding.

Emoção Valor do Enconding Vetor de One Hot Encoding

Raiva 0 [1, 0, 0, 0, 0]

Medo 1 [0, 1, 0, 0, 0]

Felicidade 2 [0, 0, 1, 0, 0]

Neutralidade 3 [0, 0, 0, 1, 0]

Tristeza 4 [0, 0, 0, 0, 1]

Então, para cada emoção é atribuído um vetor de 5 posições cujo valor do encoding

representa a posição que possui valor 1. Dessa maneira será possível comparar diretamente a

camada de saída que é definida com 5 neurônios.

3.4.2 Balanceamento dos dados

Quanto maior a quantidade de dados para treinar uma rede, melhor. O conjunto de

dados utilizado possui aproximadamente um mínimo de 4 mil imagens por emoção, exceto as

emoções de nojo e surpresa que possuem 436 e 3171 imagens, respectivamente.

Por conta do desbalanceamento dos dados em relação às emoções de nojo e surpresa,

para evitar um viés nos dados de treinamento da rede, elas não foram utilizadas. Restando

apenas 5 emoções para a análise.

38

3.5 Treinamento das redes

3.5.1 Parâmetros iniciais

Nas primeiras redes treinadas alguns parâmetros utilizados foram escolhidos com base

em heurísticas gerais, como learning rate inicial de 0.01, e outros com base em parâmetros

ótimos para o problema de reconhecimento de números escritos à mão, MNIST abordado por

Nielsen (2015), como mini batch size de valor 10 e 30 neurônios por camada.

3.5.2 Teste dos parâmetros

Após observar a acurácia de diversos parâmetros foram utilizadas redes com apenas

duas hidden layers, uma vez que o problema de vanishing gradient torna muito mais lento o

processo de treinamento de uma rede com múltiplas hidden layers se a função de ativação

possui sua imagem contida entre 0 e 1.

Definido o número de hidden layers, foram testados números de neurônios próximos

a 5000 como apresentados por Nordén (2019), e empiricamente learning rates próximas a 0.1

e número de epochs superiores a 100, demonstraram uma melhor performance e

evidenciaram pontos que serão discutidos nos resultados.

A partir disso determinou-se intervalos de valores de epochs, learning rate e número

de neurônios por camada para cada uma das redes a serem comparadas como pode ser visto

na tabela 4.

Tabela 4 - Hiperparâmetros testados.

Hiperparâmetro Intervalo de Valores

neurônios por camada 50; 100; 150

learning rate 0.1; 0.2; 0.3; 0.4; 0.5

epochs 100; 200; 300

mini batch size 32

3.5.3 Refinamento dos parâmetros

Comparando os resultados das 45 redes treinadas com os parâmetros de teste, houve

motivação para treinar mais 36 redes com parâmetros refinados. Tal motivação será discutida

nos resultados, eles podem ser observados na tabela 5.

39

Tabela 5 - Hiperparâmetros refinados

Hiperparâmetro Intervalo de Valores

neurônios por camada 100; 150

learning rate 0.05; 0.1; 0.15

epochs 100; 200

mini batch size 16; 32; 64

3.5.4 Avaliação de performance

A partir dos dados obtidos para cada uma dessas redes, foram escolhidas as 3

melhores em questão de performance, adotando como medida a melhor acurácia média

exibida no conjunto de imagens de teste e com o menor desvio padrão, a partir da epoch 50.

O número de epochs a partir do qual foi medida a performance foi determinado pelo

método de early stopping utilizado para evitar o problema de overfitting observando os

gráficos de acurácia da rede sobre o conjunto de teste.

40

4 RESULTADOS

Nesta seção serão discutidos os resultados obtidos ao longo do treinamento das redes

com diversos hiperparâmetros, assim como destacados os pontos que levaram à escolha dos

mesmos e das redes com melhores performances.

4.1 Redes iniciais

Os hiperparâmetros utilizados no treinamento da primeira rede foram os apresentados

pela tabela 6.

Tabela 6 - Hiperparâmetros primeira rede de treino.

Nodes / hidden layer 30

Mini batch size 10

Epochs 30

Learning Rate 3

Esta foi a única rede treinada com apenas uma hidden layer, a acurácia média obtida

sobre o conjunto de teste desta rede foi de 22.2%, que se aproxima da acurácia esperada de

20% ao se escolher uma emoção aleatoriamente entre as 5 classificadas.

Isso está relacionado ao fato de que os hiperparâmetros escolhidos foram os mesmos

que Nielsen (2015) utiliza em seu livro para obter uma acurácia superior a 95% no

reconhecimento de dígitos escritos a mãos, um problema completamente diferente. Seus

resultados de nada serviriam para identificar emoções em imagens.

4.2 Busca por parâmetros

As 66 redes treinadas foram divididas em duas levas de parâmetros, onde na primeira

delas foram treinadas 30 redes e na segunda 36. As motivações e resultados são

demonstrados a seguir.

4.2.1 Primeira leva de treinamento

Foram treinadas mais de 20 redes no google colaboratory a fim de delimitar um range

de parâmetros promissores a serem utilizados na primeira leva da procura de uma rede com

melhor acurácia.

Partindo dos trabalhos de Bendio (2012) e Keskar et al (2017), como mencionado na

seção 2.7.3, o mini batch size escolhido para iniciar a busca foi de 32 amostras por mini

41

batch. O número total de neurônios de cada uma das redes foi definido na mesma ordem de

grandeza dos 5000 tidos como melhor quantidade no paper apresentado por Nordén (2019)

comentado na seção 3.5.2. A partir do treinamento das redes no google colaboratory foi

observado um melhor desempenho utilizando learning rates em torno de 0.1.

O período de uso limitado do google laboratory impossibilita uma melhor avaliação

do número de epochs, pois quanto maior este número maior o tempo de treinamento

necessário. Houve então a tentativa de treinar redes com todos os parâmetros listados na

tabela 4 em um dell vostro 5470. Porém, após aproximadamente 158h de execução no

treinamento das redes, notou-se uma pior performance naquelas com learning rates

superiores a 0.2 e o código foi interrompido obtendo os resultados de treino de apenas 30

redes como primeira leva de treinamento. Excluindo, dessa forma, as redes com 150

neurônios por camada, como pode ser visto na tabela 7.

Tabela 7 - Hiperparâmetros das 30 redes treinadas na primeira leva.

Hiperparâmetro Intervalo de Valores

neurônios por camada 50; 100

learning rate 0.1; 0.2; 0.3; 0.4; 0.5

epochs 100; 200; 300

mini batch size 32

Dentre as 30 redes treinadas foram escolhidas as 3 com maior acurácia média, que

resultantes dos hiperparâmetros apresentados na tabela 8.

Tabela 8 - Hiperparâmetros 3 redes com maior acurácia média da primeira leva.

Hiperparâmetro 1ª Rede 2ª Rede 3ª Rede

neurônios por camada 100 100 100

learning rate 0.1 0.2 0.2

epochs 300 300 200

mini batch size 32 32 32

Foi observado também uma tendência de estabilização da acurácia no conjunto de

testes a partir da epoch 50, como pode ser visto nos gráficos das figuras 16, 17 e 18.

42

Figura 16 - Gráfico test accuracy vs epochs 1ª Rede, primeira leva.

Figura 17 - Gráfico test accuracy vs epochs 2ª Rede, primeira leva.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

43

Figura 18 - Gráfico test accuracy vs epochs 3ª Rede, primeira leva.

Suas acurácias médias e respectivos desvios padrão são apresentados na tabela 9.

Tabela 9 - Média e desvio padrão das 3 redes com maior acurácia média da primeira leva.

Rede Acurácia Máxima Acurácia Média Desvio Padrão

1ª 2904 2688.313 138.604

2ª 2776 2585.52 135.221

3ª 2538 2529.514 140.107

Das 5834 imagens do conjunto de teste, a 1ª rede obteve acurácia média e acurácia

máxima na classificação das emoções de aproximadamente 46% e 49.7%, respectivamente,

que é muito superior em comparação aos 22% da primeira rede.

Dois fatores interessantes também podem ser observados nos gráficos acima, a

influência do learning rate no tempo de convergência e também na dispersão dos dados.

Ambos serão comentados posteriormente.

Fonte: Elaborado pelo autor.

44

4.2.1 Segunda leva de treinamento

Baseado nos resultados obtidos pelo treino das primeiras 30 redes, foram treinadas mais

36 redes com parâmetros próximos aos das redes que apresentaram melhores performances

na primeira leva de treinamento, exatamente como descrito na tabela 5 da seção 3.5.3.

Após, aproximadamente, 151h de execução foram obtidas as 3 melhores redes dentre a

última leva de treinamento, essas redes possuem os hiperparâmetros listados na tabela 10.

Tabela 10 - Hiperparâmetros das 3 redes com maior acurácia média na segunda leva.

Hiperparâmetro 1ª Rede 2ª Rede 3ª Rede

neurônios por camada 100 150 150

learning rate 0.05 0.05 0.05

epochs 100 200 100

mini batch size 16 16 16

Os resultados obtidos por elas são consideravelmente melhores e podem ser

observados na tabela 11.

Tabela 11 - Média e desvio padrão das 3 redes com maior acurácia média da segunda leva.

Rede Acurácia Máxima Acurácia Média Desvio Padrão

1ª 2894 2752.306 72.889

2ª 2931 2750.422 99.623

3ª 2863 2728.187 90.680

A estabilização da acurácia parece se iniciar em torno do mesmo número de epochs da

primeira leva, 50. E pode ser observado nas figuras 19, 20 e 21.

45

Figura 19 - Gráfico test accuracy vs epochs 1ª Rede, segunda leva.

Figura 20 - Gráfico test accuracy vs epochs 2ª Rede, segunda leva.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

46

Figura 21 - Gráfico test accuracy vs epochs 3ª Rede, segunda leva.

É notável a diminuição das oscilações apresentadas pelos gráficos da segunda leva

comparados a primeira, essa diminuição de barulho é associada ao mini batch size. Outro

ponto a considerar é o aumento na acurácia média e a diminuição do desvio padrão, um fato

interessante é que o learning rate de todas as redes com melhor performance é o mesmo,

ambos os pontos serão discutidos posteriormente.

4.3 Análise dos hiperparâmetros com melhor performance

Dentre os resultados exibidos pelas 66 redes treinadas, as evidências de alguns fatores

teóricos sobre as redes neurais relacionadas aos hiperparâmetros se destacam e serão

analisadas a seguir.

4.3.1 Learning rate

Durante a procura por um valor ótimo de learning rate, dois pontos principais foram

observados:

● A velocidade de convergência

● Acurácia para qual convergem os valores.

Sobre a velocidade de convergência, comparando os gráficos das figuras 17 e 18, a

acurácia da rede com learning rate = 0.1 parece começar sua estabilização na faixa das 50

epochs enquanto a rede com learning rate = 0.2 apresenta sinal de estabilidade na faixa de 25

Fonte: Elaborado pelo autor.

47

epochs o que é esperado já que este é um termo na equação do gradient descent que

influencia diretamente no quanto o valor do custo se aproxima do mínimo local em cada

iteração.

Apesar da velocidade de convergência ser diretamente proporcional ao learning rate, a

acurácia obtida não possui a mesma relação, uma vez que valores maiores deste

hiperparâmetro impossibilitam a função de custo atingir o ponto mínimo de um vale local.

Estes dois pontos estão representados nas figuras 22 e 23, que mostram os valores da função

de custo da 1ª e 2ª rede da primeira leva, respectivamente.

Figura 22 - Gráfico training cost vs epochs 1ª Rede,
primeira leva.

Figura 23 - Gráfico training cost vs epochs 2ª Rede,
primeira leva

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

48

Enquanto o gráfico da 2ª rede (figura 23) mostra sinais de um início de estabilização em

300 epochs, o gráfico da 1ª rede (figura 22) parece continuar convergindo cada vez mais para

zero. Apesar da velocidade de convergência da rede com maior learning rate ser maior o

valor obtido da função de custo não chega a ficar abaixo de 1.0, em comparação, o learning

rate menor apresenta valores próximos a 0.5 em 300 epochs sem sinal de alterar essa

tendência de diminuição.

Para as redes da segunda leva, nota-se algo interessante. Todos os learning rates das 3

redes com melhor performance são iguais e possuem valor de 0.05, o menor dos valores de

learning rate utilizados nos treinamentos. Isso também vai de encontro com a proposta

teórica de que quanto menor o seu valor, mais o gradient descent conseguirá aproximar o

valor do custo ao seu mínimo local. O gráfico da função de custo da 2ª rede da segunda leva

(a única dentre as 3 com 200 epochs), apresentado na figura 24, permite uma melhor

visualização.

Figura 24 - Gráfico training cost vs epochs 2ª Rede, segunda leva.

Na figura acima não há sinais de alteração na taxa de variação da curva em direção ao

mínimo da função de custo, em 200 epochs, o que implica em uma convergência mais lenta.

Em contrapartida, os números obtidos na minimização da função de custo são muito mais

animadores. É notável também a diminuição das oscilações nos gráficos das redes da segunda

leva, isso se deve ao mini batch size e será abordado a seguir.

Fonte: Elaborado pelo autor.

49

4.3.2 Mini batch size

Segundo Keskar et al (2017), um tamanho maior no número de amostras utilizadas em

cada mini batch causa uma degradação significativa na qualidade do modelo em relação a sua

habilidade de generalização.

Nos resultados da segunda leva, não foi apenas o menor learning rate que demonstrou

a melhor performance, mas também o menor mini batch size foi o hiperparâmetro utilizado

pelas 3 redes com melhor performance. E, ao contrário da primeira leva, foram utilizados 3

valores (16, 32 e 64) a fim de comparar os seus efeitos sobre as redes. As figuras 25, 26 e 27

mostram os gráficos da rede classificada como a melhor dentre as da segunda leva e seus 3

mini batch sizes utilizados.

Figura 25 - Gráfico test accuracy vs epochs 1ª Rede, segunda leva, mini
batch size 16.

Fonte: Elaborado pelo autor.

50

Figura 26 - Gráfico test accuracy vs epochs 1ª Rede, segunda leva, mini
batch size 32.

Figura 27 - Gráfico test accuracy vs epochs 1ª Rede, segunda leva, mini
batch size 64.

Fica evidente, pelos gráficos acima, que há uma piora considerável na acurácia da rede

sobre o conjunto de testes quanto maior o mini batch size utilizado. Além de oscilações cada

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

51

vez maiores, as acurácias obtidas foram cada vez menores onde as máximas praticamente não

chegaram a alcançar 2800 emoções classificadas corretamente.

4.3.3 Epochs e overfitting

Quanto maior o número de epochs mais a função de custo se aproximará do seu

mínimo local, o que não implica necessariamente em uma melhor performance quando

aplicada em dados desconhecidos. O fenômeno overfitting é um problema tentador que pode

levar a crença de que quanto mais epochs melhor a rede performará, se for analisada apenas a

acurácia nos dados de treino.

Ao observar a acurácia neste conjunto, os resultados são incrivelmente animadores, as

figuras 28 e 29 mostram os resultados obtidos para a 1ª e 2ª redes da segunda leva de treino,

respectivamente.

Figura 28 - Gráfico training accuracy vs epochs 1ª Rede, segunda leva.

Fonte: Elaborado pelo autor.

52

Figura 29 - Gráfico training accuracy vs epochs 2ª Rede, segunda leva.

O número de emoções classificadas corretamente no conjunto de treino não mostra

tendência alguma em parar de aumentar e, de fato, quanto maior o número de epochs maior

será o número de imagens classificadas corretamente. Porém, como discutido antes, a

acurácia no conjunto de testes apresenta uma estabilização iniciada no máximo por volta das

50 epochs.

Como dito na seção 2.8.2, todo o treino realizado a partir do ponto que a acurácia de

teste se estabiliza, na realidade, é prejudicial para a performance da rede. O que ela está

fazendo aumentando o número de classificações corretas do conjunto de treino é apenas uma

“memorização” do mesmo. Dessa forma, o indicado é parar o treinamento quanto antes for

detectada a estabilização da acurácia no conjunto de testes.

Fonte: Elaborado pelo autor.

53

5 CONCLUSÃO

Considerando todos os fatores apresentados anteriormente, a melhor rede obtida entre

as 66 treinadas foi a rede com 100 neurônios por hidden layer, 0.05 de learning rate, mini

batch size de 16 e 100 epochs de treinamento, coincidentemente classificada como 1ª rede da

segunda leva.

Os fatores que levaram a essa conclusão são os que beneficiam uma melhor acurácia em

um aspecto generalizado, que é o principal objetivo da área de machine learning. Entre estes

fatores os mais decisivos foram a acurácia média no conjunto de testes de 47.17% (maior

entre todas as testadas) e um baixo número de epochs frente às outras redes, o que leva a uma

menor chance de overfitting.

Apesar de não serem satisfatórios o suficiente para uma aplicação prática no

reconhecimento de emoções, os resultados obtidos neste trabalho podem ser comparados aos

resultados obtidos por Nordén (2019) de 61.1% na acurácia máxima com o uso de redes

neurais não convolucionais. Aleḿ disso estes resultados evidenciam pontos interessantes com

relação a influência do conjunto de dados e hiperparâmetros utilizados ao se trabalhar com

redes neurais, também mostra uma clara evolução na capacidade do aprendizado das mesmas

quando considerados os hiperparâmetros compatíveis com a arquitetura utilizada. Redes

neurais convolucionais apresentam resultados muito superiores, como os apresentados por

Khaireddin (2021) de 73.28% de acurácia sobre o conjunto de dados de teste da base FER-

2013.

A importância de aplicações como a abordada neste trabalho é evidenciada pelos

sistemas de reconhecimento de emoções em desenvolvimento na atualidade, com finalidades

diversas. Alguns estão sendo implementados em carros autônomos para garantir a segurança

dos motoristas (Jain, 2021), outros estão sendo aplicados de maneiras coercivas em cidadãos

chineses (Wakefield, 2021 e Standaert, 2021).

Tais implementações levam a discussões cada vez mais complexas sobre o uso correto

da inteligência artificial e apenas reforçam a importância da interação crescente entre pessoas

e máquinas. Sendo o reconhecimento de emoções apenas um dos usos da inteligência

artificial como ferramenta para, esperançosamente, possibilitar um futuro benéfico para a

humanidade.

54

6 REFERÊNCIAS

AFLAK, O. Neural Network from scratch in Python: Make your own machine learning
library. towards data science, 2018. Disponível em: <https://towardsdatascience.com/math-
neural-network-from-scratch-in-python-d6da9f29ce65> Acesso em: 27 abril 2021.

ANYOHA, R. The history of artificial Intelligence, sitn.hms.harvard.edu, 2017. Disponível
em: <https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/>. Acesso em: 21
maio 2021.

BENGIO, Y. Practical Recommendations for Gradient-Based Training of Deep
Architectures. arvix, 2012. Disponível em: <https://arxiv.org/pdf/1206.5533.pdf>. Acesso
em: 30 maio 2021.

BOTTOU, L. Stochastic Gradient Descent Tricks. Microsoft, 2012. Disponível em:
<https://www.microsoft.com/en-us/research/wp-content/uploads/2012/01/tricks-2012.pdf>.
Acesso em: 29 maio 2021.

BROWNLEE, J. How to Configure the Number of Layers and Nodes in a Neural
Network. machinelearningmastery, 2018. Disponível em:
<https://machinelearningmastery.com/how-to-configure-the-number-of-layers-and-nodes-in-
a-neural-network/>. Acesso em 30 maio 2021.

BROWNLEE, J. 3 Ways to Encode Categorical Variables for Deep Learning.
machinelearningmastery, 2019. Disponível em: <https://machinelearningmastery.com/how-
to-prepare-categorical-data-for-deep-learning-in-python/>. Acesso em: 06 junho 2021.

CALEBE, F.; AMARAL, R. Redes Neurais Multicamadas para Classificação e
Regressão. RPubs, 2019. Disponível em: <https://rpubs.com/CalebeF/534504>. Acesso em
23 maio 2021.

DECHTER, R. LEARNING WHILE SEARCHING IN CONSTRAINT-
SATISFACTION-PROBLEMS. aaai.org, 1986. Disponível em:
<https://www.aaai.org/Papers/AAAI/1986/AAAI86-029.pdf>. Acesso em 21 maio 2021.

DELUA, J. Supervised vs. Unsupervised Learning: What’s the Difference? IBM Cloud,
2021. Disponível em: <https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-
learning>. Acesso em 25 maio 2021.

DOBRZANSKI, M. D. DeepLearningPython. GitHub, 2016. Disponível em:
<https://github.com/MichalDanielDobrzanski/DeepLearningPython/blob/master/
network2.py>. Acesso em 16 maio 2021.

55

EARNSHAW, B. A brief survey of tensors. Slideshare, 2017. Disponível em:
<https://www.slideshare.net/BertonEarnshaw/a-brief-survey-of-tensors>. Acesso em 27 maio
2021.

EKMAN, P.; FRIESEN, W. V.; TOMKINS, S. S. Facial Affect Scoring Technique: A First
Validity Study. Paulekman, 1971. Disponível em: <https://www.paulekman.com/wp-
content/uploads/2013/07/Facial-Affect-Scoring-Technique-A-First-Validity-Study.pdf>.
Acesso em: 22 maio 2021.

ENCODE. In: DICIO, Oxford Learner’s Dictionaries. Oxford University Press, 2021.
Disponível em:
<https://www.oxfordlearnersdictionaries.com/us/definition/american_english/encode>
Acesso em: 06 junho 2021.

FEI-FEI, L.; KAI, L.; SOCHER, R.; DONG, W.; DENG, J. ImageNet: A Large-Scale
Hierarchical Image Database. arvix, 2009. Disponível em:
<https://arxiv.org/abs/1409.0575.pdf>. Acesso em: 21 maio 2021.

Google Colaboratory. Google, https://colab.research.google.com/notebooks/intro.ipynb?
utm_source=scs-index#scrollTo=lSrWNr3MuFUS

Gradient descent. Khan Academy. Disponível em:
<https://www.khanacademy.org/math/multivariable-calculus/applications-of-multivariable-
derivatives/optimizing-multivariable-functions/a/what-is-gradient-descent>. Acesso em: 30
maio 2021.

IZARD, C. E. The many meanings/aspects of emotion: Emotion definitions, functions,
activation, and regulation. Emotion Review, 2, 363-370, 2010. Disponível em:
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.893.7800&rep=rep1&type=pdf>.
Acesso em: 22 maio 2021.

JAIN, R. Affectiva, an emotion-detection tech startup, acquired for $73.5 million.
itmunch, 2021. Disponível em: <https://itmunch.com/affectiva-acquired-for-73-5-million-
what-is-emotion-detection/> . Acesso em: 20 junho 2021.

JONES, B. W. Evolution of Sight in the Animal Kingdom. Webvision, 2014. Disponível
em: <https://webvision.med.utah.edu/2014/07/evolution-of-sight-in-the-animal-kingdom/>.
Acesso em: 21 maio 2021.

KAGGLE. FER-2013: Learn facial expressions from an image. Kaggle, 2020. Disponível
em: <https://www.kaggle.com/msambare/fer2013>. Acesso em: 22 maio 2021.

56

KESKAR, N. S. et al. On Large-Batch Training For Deep Learning: Generalization Gap
And Sharp Minima. arxiv, 2017. Disponível em: <https://arxiv.org/pdf/1609.04836.pdf>.
Acesso em 30 maio 2021.

KHAIREDDIN, Y.; CHEN, Z. Facial Emotion Recognition: State of the Art Performance
on FER2013. arxiv, 2021. Disponível em: <https://arxiv.org/pdf/2105.03588v1.pdf>. Acesso
em: 20 junho 2021.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. ImageNet Classification with Deep
Convolutional Neural Networks. Papers, 2012. Disponível em:
<https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf>.
Acesso em: 21 maio 2021.

LANGLOTZ, P. C. et al. A Roadmap for Foundational Research on Artificial
Intelligence in Medical Imaging. researchgate, 2018. Disponível em:
<https://www.researchgate.net/publication/332452649_A_Roadmap_for_Foundational_Rese
arch_on_Artificial_Intelligence_in_Medical_Imaging_From_the_2018_NIHRSNAACRThe_
Academy_Workshop>. Acesso em: 21 maio 2021.

MATTHEW, J. A.; FLANAGAN, B. Optimization Techniques to Improve Inference
Performance of a Forward Propagating Neural Network on an FPGA. 2020.

MCCARTHY, J. What is Artificial Intelligence?. homes.di.unimi.it, 2004. Disponível em:
<https://homes.di.unimi.it/borghese/Teaching/AdvancedIntelligentSystems/Old/
IntelligentSystems_2008_2009/Old/IntelligentSystems_2005_2006/Documents/Symbolic/
04_McCarthy_whatisai.pdf>. Acesso em 21 maio 2021.

MILLION, E. The Hadamard Product. buzzard.ups.edu, 2007. Disponível em:
<http://buzzard.ups.edu/courses/2007spring/projects/million-paper.pdf>. Acesso em: 26 maio
2021.

MOINDROT, O. CS 131 Lecture 1: Course introduction. Github, 2018. Disponível em:
<https://github.com/StanfordVL/cs131_notes/blob/master/lecture01/lecture01.pdf>. Acesso
em: 21 maio 2021.

NIELSEN, M. A. Neural Networks and Deep Learning, Determination Press, 2015.

NORDÉN, F.; MARLEVI, F. V. R. A Comparative Analysis of Machine Learning
Algorithms in Binary Facial Expression Recognition. diva-portal, 2019. Disponível em:
<http://www.diva-portal.org/smash/get/diva2:1329976/FULLTEXT01.pdf> . Acesso em: 30
maio 2021.

57

ROSENBLATT, F. Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. Cornell Aeronautical Laboratory, INC, 1961. Disponível em:
<https://apps.dtic.mil/sti/pdfs/AD0256582.pdf>. Acesso em 22 maio 2021.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning representations by
back-propagating errors. Nature, Vol 323, p 533 - 536, 1986. Disponível em:
<http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf>. Acesso em: 25 maio 2021.

SAMUEL, A. L. Some Studies in Machine Learning Using the Game of Checkers. IBM
Journal, Vol. 3, 1959. Disponível em:
<http://www2.stat.duke.edu/~sayan/R_stuff/Datamatters.key/Data/samuel_1959_B-95.pdf>
Acesso em 21 maio 2021.

SANDERSON, G. Gradient descent, how do neural networks learn | Chapter 2, deep
learning. Youtube, 2017. Disponível em: <https://www.youtube.com/watch?
v=IHZwWFHWa-w&t=965s>. Acesso em 25 maio 2021.

SEYMOUR, A. P. The summer vision project. people.csail.mit.edu, 1966. Disponível em:
<http://people.csail.mit.edu/brooks/idocs/AIM-100.pdf>. Acesso em 21 maio 2021.

STANDAERT, M. Smile for the camera: the dark side of China’s emotion-recognition tech.
The Guardian, 2021. Disponível em:
<https://www.theguardian.com/global-development/2021/mar/03/china-positive-energy-
emotion-surveillance-recognition-tech> . Acesso em: 20 junho 2021.

WAKEFIELD, J. AI emotion-detection software tested on Uyghurs. BBC, 2021.
Disponível em: <https://www.bbc.com/news/technology-57101248>. Acesso em: 20 junho
2021.

WAKEFIELD, J. Elon Musk’s Neuralink ‘shows monkey playing Pong with mind’. bbc,
2021. Disponível em: <https://www.bbc.com/news/technology-56688812>. Acesso em: 22
maio 2021.

What is Artificial Intelligence (AI)? IBM Cloud Education, 2020. Disponível em:
<https://www.ibm.com/cloud/learn/what-is-artificial-intelligence>. Acesso em: 22 maio 2021

YAN-TAK, A. Lecture 2 - Linear Regression and Gradient Descent | Stanford CS229:
Machine Learning (Autumn 2018). Youtube, 2018. Disponível em:
<https://www.youtube.com/watch?
v=4b4MUYve_U8&list=PLoROMvodv4rMiGQp3WXShtMGgzqpfVfbU&index=10>.
Acesso em: 19 abril 2021.

58

ZUFFO, M. Acreditamos em uma relação simbiótica humano-máquina. jornal.usp, 2020.
Disponível em: <https://jornal.usp.br/ciencias/acreditamos-em-um-relacao-simbiotica-
humano-maquina/>. Acesso em 22 maio 2021.

